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1.0 I'TRODUCTIO,"

In recent years expert systems have been designed to replicate human teasoning in

an increasing sphere of inference and decision-making tasks (Hayes-Roth et al.,

1983; Buchanan and Duda, 1982). Expert systems have now been developed for medi-

cal diagnosis and treatment (e.g., Shortliffe, 1976), geological exploration

(e.g., Duda et al., 1979), chemical analysis (Lindsay et al., 1980), military

planning (Engelman et al., 1979), and other areas of specialized human skill.

In other areas, however, such as image analysis, the infiltration of expert system

techniques has been relatively slow. One reason, at least, is that predominantly

mathematical or statistical methods appear to be appropriate for such tasks as

filtering or pattern matching against pixel data. The result has been a failure

thus far to integrate satisfactorily such "bottom up" methods with requirements

that promise to be more adequately met by expert system technology: e.g., the in-

corporation of intelligence information or explicit general knowledge in the

process of image analysis and image understanding, and the resolution of conflicts

between alternative sources of evidence or analysis (cf., Rosenfeld, 1984).

The objective of our research has been to address this problem on both a theoreti-

cal and a practical plane. Our theoretical goals were:

£1 to explore the feasibility of developing improved mechanisms for ex-
pert system inference, and

0 to provide a better general understanding of inference 7echanisms for
expert system applications.

In our subsequent effort, we have (a) developed a heuristic framework for the

ev.'aluation, selection, and/or design of inference methods in expert systems; (b)

critically scrutini:ed, within that franework, a variety of alternative schemes

fo- handling uncertainty- -those associated with Bares, Shafer, Zade , and non-

monotonic logic: and (c) identified shortcomings and recommended modifications or

extensions of thosce technologies. A ma-or thrust of this part of our work is that

requiremen.ts e:.:ist -ithin expert system technology itself which will (or should)

" -
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crfve it toward a closer accon.modation with mathematical or statistical rethods"

......onverselv, that the intelligent and flexible automation of probablistic

_s will require techniques of qualitative reasoning traditionally associated

.- ith artificial intelligence. This work is reported in Section 2.0 below.

Cn the practical sidc, we have developed the high-level conceptual design of a new

inference mechanism, incorporating and extending many of the findings of our

theoretical work. This system, the Non-Monotonic Probabilist (NMP), utilizes

Shaferian belief functions, fuzzy measures, and non-monotonic reasoning--where

different concepts of uncertainty call for them. Probabilistic inference is em-

bedded within a framework of qualitative reasoning which is in turn controlled by

measures of the credibility of inferential argument. "Fuzzifying" these measures,

in turn, ensures a simple but graded process of high-level control. Our work on

this system has established the feasibility of a flexible and "intelligent"

*- deplo':ment of probabilistic methods in image understanding. This work is reported

in Section 3.0 below.

lo bridge the gap between theory and practice, we have developed and

compared specific applications of Bayesian, Shaferian, and fuzzy methods to three

representative problems in the field of image analysis: the incorporation of

general knowledge or intelligence information, filtering and template matching. .4

and "7robabilistic relaxation." A description of this work is contained in Appen-

4

:1iralv, Section 4.0 summarizes the main line of argument leading to the develop-

rent of NMP and describes the prospective application of a system like NMP.

1-SA
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2.0. INFERENCE METHODS FOR EXPERT SYSTEMS

In typical expert systems applications, the highest available standard of reason-

ing in the relevant area of knowledge is expert practice itself, rather than a

formal theory, algorithm, or search technique. As a result, much of the effort in

expert systems development consists in the extraction of relevant knowledge from

human experts for translation into machine-usable form. A second consequence,

whose importance is only now being fully understood, is the need to represent

"* uncertainty, to implement processes of inexact reasoning, and to incorporate some

Vform of "metaknowledge": i.e., knowledge about the strengths and weaknesses of

the system's own knowledge base.

A variety of alternative frameworks now exist for representing and reasoning about

uncertainty. Among the most prominent are Bayesian probability theory, belief

functions (Shafer, 1976), and fuzzy set or possibility theory (Zadeh, 1965, 1972).

There is also considerable interest in non-numerical methods of inexact reasoning,

such as non-monotonic logic (Doyle, 1979). Uncertainty calculi of these types can

~w ~ contribute to a variety of expert system functions; for example: (i) to combine

different items of evidence or lines or reasoning in drawing a conclusion; (2) to

control the allocation of computational resources among different lines of reason-

ing or knowledge resources; (3) to generate requests for additional data or judg-

qw' .ents from users; (4) to halt computations when acceptable results are obtained;

and (5) to explain to users how a conclusion was arrived at and what its

credibility is.

%The selection of a framework for accomplishing these functions will also have an

impact on knowledge acquisition. The choice of such a framework will help struc-

ture the dialogue between knowledge engineer and domain expert, determining what

questions are asked and how they are answered (cf., Shafer and Tversky, 1983).

.nis process is seldom (if ever) the literal "transfer" of information, or rules,

from expert to system. Much of the relevant knowledge is (as yet) unverbalized

and only implicit in expert action and intuition. The value of frameworks for

representing uncertainty must be assessed in part, therefore, by the way they in-

2-1
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flue.nce the quality and quantity of the information an expert provides (Cohen,

..aor, and Kidd, 1984).

Unfortunately, there has as yet been little systematic research on the impact of

alternative inference frameworks either on knowledge acquisition or on expert sys-

tem functioning. In part, this can be attributed to the pragmatic urgency of get-

* ting systems up and running. In part, it may be due to a bias against numerical

. methods in the artificial intelligence tradition (as noted by Shafer, 1984a).

Finally, however, it may be due to a set of real methodological obstacles. For

example:

*i (1) Alternative frameworks for uncertainty differ in the degree to which ap-

propriate normative justifications have been achieved; they differ also in the

demands they impose on the expert for assessments, in the computational burden

*- they impose on the system, and in the ease with which they represent distinctions

and yield conclusions which are natural to a particular expert or user.

Evaluation, in short, must be multidimensional. But it is by no means clear how

- tradeoffs among these competing considerations should be resolved.

(2) The theories themselves are in a process of evolution. To some extent, the

success of an application depends on the ingenuity of the developer as much as on

the intrinsic worth or potential of the theory.

3,; Alternative frameworks often appear to differ in the concept, or kind, of un-

certainty which they attempt to capture (e.g., chance, imprecision, or complete-

ness of evidence). On the other hand, defenders of each theory tend to regard the

other theories, in some instances, as special cases of their own, and in other in-

stances as invalid. Thus, it is seldom clear whether these theories are best

regarded as competitors or as alternative tools with different, but complementary

functions.

I4
These three methodological challenges will be a recurring focus of Section 2.0.

In Section 2.1 we amplify the notion that different concepts of uncertainty may be

involved in expert reasoning, and in Section 2.2 we lay out a provisional multi-

2-2
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dimensional framework for evaluating alternative theories of inference and pin-

pointing areas in need of improvement. All this is by way of prelude to an ex-

amination of alternative systems of uncertainty in Sections 2.3 through 2.7.

2.1 Concepts of Uncertainty

How many different "kinds" of uncertainty or inexactness are there? The answer

will depend on what theory (or theories) of uncertainty we ultimately choose to

accept. Such a theory might derive a variety of apparently distinct notions from

a single underlying principle. Nonetheless, on a more superficial plane, humans

do seem to possess separate bodies of intuition, and abilities to make relatively

independent judgments, concerning different sorts of uncertainty. These appear,

moreover, to have different implications and roles in expert system design.

Briefly delineating them will clarify what it is a theory of uncertainty could or

should explain. We will distinguish among three notions:

0 chance or uncertainty about the facts

* imcompleteness or quality of evidence

* imprecision or vagueness

- 2.1.1 Chance vs. imprecision. The imprecision with which facts are specified is

not the same as uncertainty about what the facts are. For example, the data

provided by a digitized aerial photograph, consisting of a set of numbers repre-

senting gray levels at each pixel, are a precise set of data, but noise in the im-

aging process may make us uncertain what the "true" levels ought to be. Data such

as "there is a long straight feature in the upper left of the photo" are

imprecise, but entail no uncertainty. Similarly, an inference rule such as "if

there is a rectangular object, then it is either a building or a field" is both an

imprecise and an uncertain rule.

'2.1.2 Chance vs. incompleteness. Uncertainty about the facts is not the same as

incompleteness of evidence. Consider the rule:

Rl. If x is rectangular, it is a building with probability .9 or a field
with probability .1.

2-3
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This statement produces a high degree of certainty that x is a building, but it

represents only a small portion of the obtainable evidence (viz., shape) which

might bear on that question. Consider, on the other hand, the following rule:

R2. If x is rectangular and far from a road, it is a building with
probability .5 or a field with probability .5.

This statement covers more of the available evidence (i.e., shape aid distance

from a road), but yields a lower degree of certainty about the facts at issue.

2.1.3 Imprecision vs. incompleteness. Finally, imprecision and incompleteness of

evidence are distinct. In the example above, R1 was imprecise, since x could be

rectangular (and also perhaps a field or a building) to varying degrees. What if

we obtain all possible data relevant to classifying x as a rectangle (i.e., a new
40

set of very exact measurements of x's angles and sides)? Will we finally know for

sure that x is or is not a rectangle? No (unless x turns out to be a perfect

rectangle), since the imprecision in this example was the result of our ability to

stretch the use of the term "rectangle", i.e., our willingness to tolerate a

degree of deviation from perfection, not our lack of knowledge. Judgments of

imprecision, in this sense, are more akin to judgments of similarity (e.g., of x

to the "typical" rectangular object) than to judgments of the quality of evidence.

We conclude that there is at least a plausible case for distinguishing three no-

tions of uncertainty. The remaining questions (to which we turn in later

sections) are: (1) To what extent and in what way are each of these notions

relevant to expert system design? (2) Can any of these concepts be successfully0o
or naturally reduced to any of the others? (3) How successfully is each notion

captured by current theories of uncertainty?

2.2 A Framew.ork for Evaluatin Theories of Uncertainty

2.2.1 Vhy a framework? Our discussion of strengths and weaknesses of alternative

" theories will largely be structured within the framework shown in Figures 2-1 and

2-2. The purposes of the framework are heuristic:

2-4
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0 to clarify our understanding of the features involved in such an
evaluation, their relationships, and the tradeoffs that must be
resolved in the actual design of a system;

0 to suggest directions for the modification of current methods, the
development of new methods, or the synthesis of current methods, that
remedy specific shortcomings while retaining existing advantages; and

A" 0 to serve (perhaps) as the eventual basis of a knowledge engineering
tool for the design of inference methods in specific applications.

2.2.2 Components of evaluation. As shown in Figure 2-1, evaluative criteria fall
under two main headings: validity and feasibility (corresponding roughly to

benefits and costs). Under each of these are two subcategories which include fac-

tors relating to representation and reasoning, respectively. Thus, feasibility

breaks down into the quantity of inputs required by the representation of uncer-

tainty and the computational tractability of the reasoning process. ValAity

breaks down into the validity of the semantic representation and the validity of

the process of inference or reasoning. "Concept of uncertainty" is an important

conditioning parameter; i.e., the performance of a given theory of uncertainty on

the various criteria included under validity will depend on the type of uncer-

tainty which is appropriate to the application at hand.

Under validity, inference and semantics are further broken down into sets of more -

rA specific criteria, as shown in Figure 2-2. Each of these sets is a mix of formal
and informal factors, i.e., criteria which seem purely mathematical or behavioral,

on the one hand, and those which have a more cognitive or pragmatic aspect, on the

other. Thus, under semantics, we indicate the desirability of an explicit be-

havioral specification for the requi ed inputs. For example, if I assign a prob-

ability of .9 that x is a building -hen according to Bayesian theory, I would be

indifferent between a bet whose outcome depended on x's being a building and a bet

on drawing a red ball from an urn containing 90 red and 10 black balls. As we -

shall see later in this section, alternative views of uncertainty have not had as

much success in providing behavioral specifications for their inputs as has

Bayesian probability theory. On the other hand, we also indicate under semantics

the desirability that inputs take a form that is, in some sense, natural for the

P
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expert to provide. The unnaturalness of Bavesian inputs for many applications has .."

been a strong selling point for theories attempting to supplant Bayesian probabil-

ity theory.

Similarly, under inference, we include not only the existence of an axiomnatic

derivation, but also the face validity of the theory's basic postulates or rules,

the plausibility of conclusions drawn by use of the theory in specific

applications, and the successful achievement of goals by persons or systems which

use the theory.

2.2.3 What is validity? The evaluation of inference frameworks in terms of

'validity" has an inevitable air of circularity, since defenders of various alter-

native theories typically regard different sets of criteria as relevant. Thus, we

had better comment on the concept of validity which is reflected in our choice of

criteria. For example, Bayesians write as though only behavioral specification

and axiomatic derivation mattered (e.g. Lindley, 1982), while defenders of alter-

native views tend to focus exclusively on the more cognitive or pragmatic criteria

(e.g. Shafer, 1981). At the other extreme from the Bayesians, L. J. Cohen (1981)

argues that only the conformity of a theory with actual instances of unaided human

reasoning counts toward its validity (see commentary by M. S. Cohen, 1981). Thus,

the range of criteria under validity can be regarded as defining a "political"

spectrum from conservative to reform. (The non-Bayesians may regard themselves as

the reformers since they oppose the "prevailing" Bayesian position on pragmatic

grounds, but in a more meaningful sense the Bayesians are the reformers, since

they advocate that many habitual ways of thinking be rejected as cognitive

illusions.)

Our own position is that all the criteria are important. Our argument is simply

that no deep or principled distinction can be made among them. An axiomatic

derivation lends credibility to a theory to the degree that the axioms themselves,

*and the assumptions in the derivation, are found to be plausible, desirable, or

applicable (cf., Shimony, 1970). This is only a difference in degree from the

case where a theory lacks such a derivation, but where its basic postulates them-

selves have face validity or plausibility. Similarly, since accepting a theory
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. entails acceptance of inferential conclusions drawn with its aid, there is no

* reason why the intrinsic plausibility of those conclusions, in specific instances,

should not count for or against the plausibility of the theory. Finally, since we

do not regard our intuitions regarding plausibility as infallible, we must allow

actual success in using a framework to achieve our goals as an additional, though

highly imperfect, indication of the overall plausibility of that framework.

(Intuitions of plausibility in general may be the product of an evolutionary past

comprising along series of actual successes and failures.) In sum, we regard all

the criteria listed under validity as tools for enhancing the overall plausibility

' of our system of beliefs and, ultimately, our success in action. No one of them

has a privileged status, and no one can be wholly ignored for other than arbitrary

or ad hoc reasons.

2.2.4 Implications for knowledge engineering. There are two important corol-

laries of this view for the proces- of knowledge engineering. First, the cus-

tomary distinction between replicating expert knowledge and devising an analytic,

prescriptive, or statistical model cannot be regarded as a sharp one. Adoption of

a particular inference framework is a process of "bootstrapping": prior intui-

tions and judgments (at the level of axioms, postulates, and/or specific

inferences) determine the initial design of an inference mechanism; the output of

that mechanism then may lead to the reconsideration and revision of previous in-

tuitions and judgments with which it does not agree, or to redesign of the

mechanism. Builders of expert systems have tended to put more weight on

"capturing" an expert's pre-existing intuitions about specific instances than on

the selection of inference schemes with globally plausible properties (i.e.,

axioms or postulates) which might lead to some revision in those intuitions.

Note, however, that in other contexts, knowledge engineers do not hesitate to im-

pose constraints on the format in which experts are asked to report their

'knowledge (cf., rule-based elicitation methods, such as EMYCIN; also the descrip-

tion of Nii's methods in Feigenbaum. and McCorduck, 1983; Buchanan et al., 1983).

B'y formulating his knowledge within these constraints, the expert himself may

achieve new insights. We would argue that constraints imposed by theories of in-

ference should be regarded in a similar light. (Cohen, Mavor, and Kidd, 1983,

contains further discussion of this point.)
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So::e iauidance, however, can be provided to the knowledge engineer in his initial

' se'ection of an inference framework. The discussion in Section 2.1 suggested that

:ntuitions about uncertainty fall into three relatively separable sets, cor-

responding to different concepts of uncertainty. Thus, a proposed theory of un-

" •certainty cannot be evaluated in the abstract; we must consider its plausibility

:ih respect to the appropriate set of intuitions. This suggests the following

approach to a methodology of knowledge engineering:

0 prior determination (through use of an evaluation framework such as
the one described above) of inference mechanisms which are well-suited
for specific concepts of uncertainty,

* determination on the spot, for various components in a specific

application, of the concept or concepts of uncertainty that are
relevant.

Judgments relating components of a specific expert system application to different

concepts of uncertainty would thus serve as a mediating link between that applica-

"ion and the initial selection or design of an inference mechanism. Note that

determination of the relevant concept of uncertainty in a specific application

.. may, in part at least, be a function of explicitly identifiable features of the --

application: for example, the generic problem type (e.g., diagnosis, estimation,

classification, monitoring, or choice of actions) and generic interactive func-

t*ions (e.g., interpretations of user queries and data inputs, display of conclu-

sions and explanations to users, alerting with regard to real time events,

requests for user judgments or data, and incorporation of user overrides or revi-

sions into the knowledge base). Thus, general guidelines linking problem types

and interactive functions to concepts of uncertainty might eventually be devised.

2.3 Current Status of Methods for Handling Uncertainty

:f e:%:pert systems are to replicate the performance of experts in cognitive tasks,

in almost all cases some method must be found that matches the human ability to

carr; out inexact reasoning. In the remainder of Section 2.0, we examine a

variety of calculi to that end. We will focus far less on the details of the

theories than (a) on their strengths and weaknesses in the various categories out-
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lined in Section 2.2, arnd (b) on potential modifications, amplifications or syn-

theses to redress weaknesses. After briefly discussing MYCIN, we shall move on to

Bayesian proba'ilities 'Section 2.4), belief functions (Section 2.5,, fuzzy sets

(Section 2.6), and non-monotonic logic (Section 2.7). The major positive con-

tribution of this review is that numerical calculi will not adequately capture the

human ability to intelligently and flexibly manipulate uncertainties unless they

are embedded in a higher-order system of qualitative reasoning. This thesis

provides an essential basis for the new system of reasoning to be proposed in Sec-

tion 3.0. A less technical description of the various theories themselves may be

found in Cohen et al., 1984.

2.3.1. MYCIN. The developers of MYCIN, by far the most familiar and influential

expert system, recognized the need for an uncertainty calculus and proceeded to

invent their own (Shortliffe, 1976, Chap. 4). Based on Shortliffe's calculus of

* certainty factors, MYCIN has had a certain degree of pragmatic success.

Unfortunately, its developers as well as others have recognized an increasing num-

ber of difficulties, especially in the area of validity (Buchanan and Shortliffe,

1984).

Feasibility: Shortliffe's calculus has been demonstrably successful in this area.

The required number of inputs is kept to a minimum, since complex judgments of

evidential interdependencies and prior probabilities are not elicited. Inference

rules are computationally consistent with a highly modular, rule-based, backwards

chaining architecture.

Validity: Semantics: An original goal of M4YCIN was to provide a format for ex-

pert inputs with a natural interpretation, as the degree to which a bit of

evidence "confirms" a conclusion. However, no behavioral specification for cer-

taint), factors has been offered. Moreover, even on an informal level, it is un-

clear whether e:xperts can have a sufficient grasp of the meaning of the numbers

they are asked to assess. For example, certainty factors confound different

senses of uncertainty, as well as confounding uncertainty and the importance of

the hypothesis under consideration.
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Axiomatic derivation: .. YCIN lacks any deep normative justification. Adams (1976K

h~is shown, worc-.'erzm: YC:N cannot be plausibly regarded as an approximation

to Fnvesian methods, as Shortliffe had o:iginally supposed.

Face validity: N%=erous postulates or procedures in certainty factor theory ap-

pear ad hoc, impiausible, or inconsistent. :hese include its disregard for

interdependencies, its disregard for prior probabilities, the arbitrary cutoff on

the certainty of the antecedent required to trigger a rule, and the inconsistent

simultaneous use of the MIN operator and multiple rules to capture a disjunction

of evidence.

Plausibility of instances: MYCIN has had some success in empirical tests which

compared its performance, in prescribing therapy, with that of experts (Lu et al.,

1979). In some cases, however, fIYCIN's conclusions do not match intuitions. Ac-

* cording to Buchanan and Shortliffe, with concurring evidence, results converge too

rapidly on certainty even when the evidence is very weak. In an earlier version

of the calculus, a very small amount of conflicting evidence could overwhelm a

large amount of concurring evidence.

- What concepts of uncertainty does MYCIN address? It makes no provision for im-

preciseness of user inputs; for example, there is no measure of the degree to

which the user's description of the data matches the antecedent of a rule. As for

the chance of a hypothesis being true and the quality of evidence supporting the

estimate of that chance, MYCIN is ambiguous. Certainty factors could be construed

as representing either one (Buchanan and Shortliffe, 1984, Chap. 10), contributing

no doubt to the semantic confusion of experts asked to provide these numbers. In

* light of the problems with validity indicated above, it cannot be concluded that
S.\*CT; gives an adequate account of either of those concepts.

2.3.2 Other develoments. Another well-kno-n system, PROSPECTOR, incorporates

elements of a Bayesian calculus, but deviates significantly from it in important

respects, i.e.. the treatment of AD and OR by MIN and MAX operators, and the con-

catenation of inferences across a series of rules (Duda et al., 1979). In the past

.wo or three years, there has been a growing sense of dissatisfaction among
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deveiopers of such svstems with the ad hoc nature of the inference mechanisms thus

far atten.Dted, and an increasing interest in presumably more rigorous

alternatives. For example. Gordon and Shortliffe (1984) have proposed that the

next step for .4YCI., is to replace certainty factors with Shafer's theory of belief

functions. Some preliminary applications of belief functions (e.g., Lowrance and

Garvey, 1983) have been proposed, and fuzzy logic now has a number of applications

(cited in Zadeh, 19 84a).

Unfortunately, such new departures may encounter difficulties comparable to those

which faced MYCIN, unless careful consideration is given to conditions of validity

involved in representing the appropriate concepts of uncertainty.

2.4 Bayesian Probabilities

2.4.1 Using probability theory for inexact reasoning. Probability theory has be-

come central to modern scientific culture. As such, it is the obvious calculus to

consider for handling inexactness in expert systems. Its supporters in this role

date back to the early work on probabilistic information processing (see Edwards,

1966) and earlier; more recent contributors have been de Dombal (1973), in the

field of medical decision making, and Schum (1980) in the intelligence field.

The application of probabilistic reasoning to rule-based expert systems is

complex, but it car be illustrated with a simple example. Part of an expert sys-

tem for image analysis could be a scene labeller, based on texture vectors. A

rule in a system resembling PROSPECTOR might be:

IF (TEXTURE IS OF TYPE X)
THEN (OBJECT 7S A BUILDING) (LR 2.3),

where LR quantifies the impact of the evidence (the texture) on the hypothesis

(that the object is a building). LR is a likelihood ratio. i.e., the probability

of finding a texture of type X given that the object is a building divided by the

probability of that texture given that it is not a building. Satisfaction of the

antecedent of this rule would lead to a process of Bayesian updating. in which the
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:: ,ct of the new evidence is combined w:ith the prior odds of the hypothesis being

- . Sutioset is the h'ypothesis that the object is a building. Then Ea:.es'

.. orer £:v. Iesn odds-likelihood form,

PrrHID _ ?rD 11 Pr[H'
Pr[HID, ?r*DH] Pr[H]

here D is the data that the texture is of type X, and H is the hypothesis that

some other interpretation for the object is appropriate. To carry out a simple

analvsis of this kind, three assessments are required, namely Pr[DIH], Pr[DIH]

and Pr[H], i.e., the likelihoods and the prior probability.

information for understanding aerial photographs may come not only from the image

itself, but also from other facts that are known about the world. So the prior

belief about H might itself be derived from a probabilistic analysis. Suppose,

ror example, that our view of how likely an object is to be a building is affected

".v the existence of intelligence reports of some recent construction activity in

7he area. Call the existence of construction activities A, and its absence A.

Then we might write

Pr[H] = Pr[H)A]Pr-A ] + Pr[HjA]Pr[A].

Dur estimation of the reliability of the reports is captured in Pr[A], and we can

now think about how likely H is in the "ight of A or A separately.

..ork on Bayesian approaches to inference has advanced from a simple one-step ap-

*D olication of Baves' rule to the elaboration in recent research of rather complex

structures capable of capturing a wide diversity of human inference tasks and

-rcscript-.-e intuitions (e.g., Schum, 1179, 1981). Bavesian techni,;ues, for

"xample, are able to accommodate a number of different ways that items of evidence

* Sr. be related to one another with respect to a hypothesis (Schum and Martin.

JS7)" e.g., they may be contradictory (reporting and denying the same event),

Scorroborativelv redundant (reportiig the same event), cumulatively redundant

reporting different events which reduce one another's evidential impact), or non-
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* redundant Krepcr'ting different events which enhance or do not change one another's
techinique c(re th videta impac ofbae na nomt oneouroehor'
evidential impact) In other, more complex cases of interdependence, Bayesian
t~Iechiniques caFt~ure the ev.idential impact of biases in an information source or ..

non-independence of information source sensitivity with respect to what is being

observed.

As might be expected, evaluation of Bayesian theory leads to results that largely

are the reverse of those for HYCIN; it ranks high in validity, but low in

feasibility.

2.4.2 Feasibility: Quantity of inputs. When one attempts to use Bayesian prob-

ability theory on real inference problems, one quickly becomes aware of the com-

plexity of the task. This complexity led Shortliffe (apparently) to construct his

calculus of certainty factors as an alternative (see Shortliffe, 1976, Section

3.2). Schum (1980, p. 207) ends his advocacy of the Bayesian approach with a

negative note: "...now we have other problems. I believe nobody realized how

many ingredients there would be and how complex the judgments about these in-

gredients would be even in apparently simple cases." In all but the most trivial

cases, a proper Bayesian analysis requires a great many conditional probabilities

to be assessed. Schum presents the analysis of a fairly simple legal trial in-

volving 7 pieces of evidence (Salmon's pills) and shows that at least 27 probabil-

ity judgments are needed, even if all reasonable independence conditions hold. As

well as requiring a very large number of probability assessments, the relations

between them are difficult to organize, and the coherence of the total set of

assessments is often difficult to determine.

Two important lines of defense for Bayesians are (a) that simplifying assumptions

* can always be made, e.g.. equal prior probabilities, conditional independence of

events; and (b, that variables which one does not care to deal with may be

"integrated out." i.e., the resulting probabilities are regarded as marginal

("a averages") :th respect to possible values of the ignored variables. Thus, a

Bayesian model may be created which is as simple as one likes.
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Unfortunately, however, the situation is not quite as clear cut as this.

"Simplifying assumptions" must in some sense be udments (e.g., that priors are

roughly equal, that events are conditionally independent). Otherwise, one

sacrifices the validity of the Bayesian approach. As one Bayesian (Lindley, 1984)

has put it, the Bayesian argument shows you the things you have to think about;

so, think about them. From the Bayesian point of view, an argument which omits

these factors is simply spurious. In the case of "integrating out" certain

variables, no formal problem presents itself, since from a theoretical point of

view the results with and without such variables should be the same. In actual

fact, however, the difference in plausibility of the overall analysis can be very

great (as we shall note below, Section 2.4.5). Thus, although the required number

of assessments may in fact be reduced by either of these means, the difficulty of

the judgments required to do so may be considerable. Schum speaks of them as

"exquisitely subtle".

S

A quite different approach, which we shall explore in greater detail below, is to

*" regard simplifying strategies as assumptions whose validity is tested implicitly

through their use in reasoning. If the outcome of using such assumptions is

plausible, the burden of explicitly judging their validity is avoided.

A related tactic is to accept the Bayesian framework as, in principle, the correct

way to handle uncertainty, and divert our research interests to approximations

that are as close as possible to the Bayesian norm. Indeed, Shortliffe (1976, p.

164) originally saw certainty factors as a device in this direction. Shortliffe,

however, did not explicitly derive his theory as a special case of the more

general Bayesian model. Adams (1976) showed that assumptions necessary to derive

Shortliffe's postulates in some cases do not exist, and in other cases are far

more restrictive and implausible than the usual assumptions of equal priors and

conditional independence. We shall return to this topic in the discussion of

Shafer's theory (Section 2.5).

S

2.4.3 Computational tractability. There is no known, computationally tractable

method for propagating uncertainties consistently through an arbitrary Bayesian

* network. Restrictions of some sort on the kind of model that is utilized are
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necessary. The only question (as in the previous discussion of inputs) is whether

the restrictions will be plausible (i.e., define a meaningful, useful special case

of Bayesian modeling) or ad hoc. PROSPECTOR adopted the latter approach. More

recently, Pearl (1982) and Kim (1983) have explored the former They show that

independence assumptions make sense, and probabilities can be propagated by simple

local computations, if the inferential network has (a) a causal interpretation,

and (b) the form of a Chow tree (i.e., it lacks undirected cycles).

Unfortunately, not all real problems will fit this special structure.

If validity is not to be sacrificed, computational tractability for a Bayesian

system can be purchased only in special cases; and even then, only at the cost of

complex and subtle judgments regarding interdependence among items of knowledge

and the overall structure of the inferential argument. As we shall see, the

situation is quite similar for Shaferian belief functions. For this reason,

Shafer (1984a) has recently argued, the introduction of probability into expert

systems appears to be inconsistent with the modularity of knowledge repre-

sentations that up to now has been the most salient characteristic of such systems.

In Section 3.0 we shall return to some of these questions. We will propose that a

careful use of qualitative reasoning, superimposed upon a probabilistic system,

may reduce the requirement for experts (or users) to address issues of interdepen-

dence and model structure explicitly, and make such assessments easier when they

are required, without undo compromise of validity.

2.4.4 Validity: Axiomatic derivation. Bayesian probability theory has a

, preeminent, though perhaps not conclusive, claim to validity among current

proposals for the handling of uncertainty. De Finetti (1937/1964) showed that un-

less .-our beliefs conform to the rules of probability, a clever opponent could

make .ou the victim of a "Dutch book," i.e., a set of gambles you would accept,

but in which you lose regardless of the outcome of an uncertain state of affairs.

'.ore recently, Lindley (1982) has given a new derivation. Suppose that people are

* going to measure the uncertainty of events by some method, and we wish to know how

good they are at doing so. If we devise a scoring system of any sort--as along as

(a) the score is a joint function of the uncertainty measure and the event's truth

I2
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or falsitv, and (b£, scores are additive across different events--then no matter

-" -. : events actually occur, the best achievable score will always go to a form of

-a-.esian -robabilitv. Lindlev concludes that "only probability is a sensible

cescription of uncertainty."

common objection to this sort of demonstration is that we are not in fact always

'or usually) faced with a malicious adversary or, indeed, with a scoring system.

But the point is not that we are, or should somehow presume that we are, always

subjected to such peculiar circumstances. Even if we never encounter these

" .conditions, other things being equal, a system which has the property of working

well in them is more desirable (in all circumstances) than one which does not. In

terms of Section 3.3, it is plausible than an adequate system of uncertainty would

guard against a Dutch book. It is plausible that such a system would score high

if we ever chose to score it.

0
The more fundamental objection, in our view, is that while probability theory has

been shown uniquely to possess a desirable property, b has not been shown to be

uniquely justified. Other systems of uncertainty may have desirable properties

that probability theory lacks. (In particular, alternative theories might deal

,. more adequately with different kinds of uncertainty, such as incompleteness of

evidence or imprecision. In this regard, note that De Finetti's and Lindley's ar-

. guments do not apply to systems which provide more than a single measure of uncer-

tainty for each event, such as the upper and lower measures in Shafer's theory, or

fuzzy probabilities in Zadeh's.)

* .. onetheless, it seems incontrovertible to us that the existence of foundational

*O arguments such as those described is a strong plus for Bayesian theory.

2.4.5 Plausibility of instances. As noted, the thrust of Bayesian analysis is

to improve, rather than to replicate ordinary thinking. Bayesians argue that if

one's ordinary intuitions are probabilistically incoherent, they ought to be

changed. We might expect, nevertheless, that these revisions of belief would

typically lead to judgments that are regarded as more plausible after reflection.

In other words, the plausibility of the axioms should outweigh the initial
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* 1ausibility of an incoherent set of judgments. In some cases, this seems true,

most people who understand an explanation of the "gambler's fallacy' seem to

~:ithat it is a fallacy; in other cases, perhaps, it is not true (e.g., Slovic

an~d versky, 1974).

There is another issue here which is, we feel, more important. Even if revised

hence, coherent) beliefs are more plausible than unrevised, incoherent ones, all

zhe credit cannot go to Bayesian theory. The reason is, that the selection of a

specific revision is not uniquely determined by the requirement of coherence.

* Consider, again, the example above of inferring the chance of H-, i.e., that a par-

ticular object is a building, based on intelligence reports of construction

activity, A. Bayesian theory tells us only that our assessment of Pr[H] should be

the same as Pr[HIA]Pr[A] + Pr[HIK]Pr[A], which is based on our assessments of

Pr[HIA], Pr[AI, and Pr[HIA]. The theory provides no guidance in the case where

:the two are not equal. Coherence by itself does not dictate that the result of an

anal.,sis is to be preferred to a direct judgment. We might choose to revise one

or more of the assessments in the analysis, rather than to revise Pr[H]f.

This problem, which we may call the incompleteness of Bayesian theory, is exacer-

bated by the fact that in any problem there is more than one possible form of

s nal-:Sis. Many advocates and many critics of the Bayesian approach seem to imply

i hat there is only one way a probabilistic analysis could be carried out and only

-'- ossible conclusion. To see that this is not the case, we return to the ex-

Of inferring H. Let B be intelligence information that a strong pressure

srou: exists within the country our photograph represents, for the erection of

"Darracks in that general area. Instead of, or in addition to, conditioning our

assessment on A, as above, we could condition on B, namely

PrjH] Pr[HjB]Pr[B] + Pr[HIB]Pr[B).

:e: again, we could condition Jointly on A and B:

* PrrH1 - Pr [HIAP'Pr[AB' + Pr'HIAB]Pr[ABI + Pr[HIABIPr[ABI + Pr[HIAB3PrIAB)].
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Still more choices are ozen to us: for example, we could assess Pr[AB] directly,

and/or further analyze it as ?rTAIB'Pr'B, and/or as Pr[BIA]Pr[A].

7he Bavesian theoretical attitude is straightforward, namely that it does not mat-

ter which of these forms of analysis we perform or which answer we select, since

coherent probability assessors should derive the same number whichever method they

choose. Theory, however, is of use because we are not ordinarily coherent in our

assessments. An analysis may well give us a different estimate of Pr[H] than if

-. we directly judged it; otherwise, we wouldn't bother with the analysis. Moreover,

' different analyses may well give us different answers; otherwise, we would have no

cause for regarding some analyses as "better" than others.

An important assumption of Bayesian theory is that all analyses (by the same

person) are based on the same evidence; they do not differ in the knowledge they

draw upon. We would argue that this is, psychologically, not true. Different

ways of formulating the same problem may well tap different internal stores of

information. What is missing from the Bayesian framework is some notion of the

quality of probability inputs, i.e., the amount of knowledge or completeness of

evidence that underlies them. Several points can be made:

0 Revision of probability judgments should be guided by a judgment of
their quality, i.e., the amount of knowledge they represent.

0 More than one analysis may be of value, if they bring different
knowledge to bear on a problem (cf., 3rown and Lindley, 1982).

0 The application of Bayesian theory to a problem is not necessarily a
linear process in which inputs are provided and conclusions computed.
It is (or often should be) an iterative process, in which comparison

* of conclusions arrived at by different methods leads to revisions of
inputs and assumptions, until overall consistency is achieved.

in ordinary statistical problem solving, perhaps, judgments of quality may safely

• remain implicit. But a major limitation in the automation of Bayesian theory

within expert systems is the lack of an explicit measure of completeness of

evidence, and a mechanism for its use in the revision of probability estimates.
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This will be a major focus in our discussion of Shafer, in Section 2.5, and in the

ne.: developments to be described in Section 3.0.

2.4.6 Semantics: Behavioral specification. Bayesian theory provides a clear be-

havioral interpretation of probabilities in terms of preferences among bets. We

*can know what someone's probabilistic beliefs are by observing their actions under

specified conditions. By contrast, a common complaint by Bayesians regarding

other theories is the difficulty of knowing what the basic measures mean.

There are three different, but related, misunderstandings of this "operational

definition." First, critics point out that betting may be an awkward and in some

cases an impossible method for eliciting probabilities. It is often easier to ask

for direct verbal judgments. There is a standard answer to this point by sophis-

ticated Bayesians: Meaning need not be equated with evidence. Bayesians can use

any method they like for estimating your probabilities, if there is a reasonable

expectation that the result will match, or at least approximate, what they would

have gotten had they used the betting paradigm.

This response hides a more subtle misunderstanding. It is still assumed that we
can, at least in principle, always know what a person's probabilities are, simply

by testing his preferences among bets. Since the operational definition specifies

a situation where he must make a choice, it is implied that any person "has" prob-

abilities waiting to be uncovered or "elicited". Is Bayesianism thus inevitable?

This conception seems to be contradicted by the incoherence we typically find in

people's unaided judgments, and which is amply documented in the experimental

psychology literature (e.g., Kahneman, Slovic, and Tversky, 1982).

The sophisticated Bayesian was right, we suggest, in distinguishing meaning and

evidence. But--sophisticated as he is--he has not absorbed the full implications

of that distinction. Although he permits other kinds of evidence, he is still

equating meaning with a particular observable operation. The problem, as pointed

out by Quine (1953) and others in a more general critique of positivism, is that

- the selection of this rather than some other component of the theory as a

"definition" is arbitrary. To return to our earlier example, suppose we equate
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Pr " for a person X with X's betting behavior in regard to H. Then we deternine
* in t> sa e a:av his value for Pr[HjA], r H A], and Pr[A]. Finally, we coirp te a

-'. rrc~:ilitv .of H, Pr 'H from the latter three values. Whv shouldn't we

define X's probability for H in terms of this operation, i.e., as Pr'[H]? One

repl'_ is that this operation requires a theoretical assumption viz., that X is

coherent, to justify the computation of Pr'H] from Pr[HIA], Pr[HIA], and Pr[A].

But the earlier "operational definition" could be regarded as theoretical, too, 7

since it is a theoretical hypothesis (i.e., that X acts so as to maximize sub'ec-

tively expected utility) that enables us to derive X's probability for H from his

preferences among gambles involving H. Conversely, we could regard the definition

in terms of Pr'[H] as purely "behavioral", by ignoring the theoretical hypotheses

implicit in our calculations.

it is far more natural to regard all these potential "definitions" simply as

O theoretical predictions. How then, without definitions, do we assess the prob-

abilities and utilities required to derive the predictions? The answer is that

testing a theory is, inevitably, a bootstapping operation, in which we use the

theory, as if it were true, to estimate values for an interrelated set of

parameters, then test for consistency of the results. If the results are

consistent, the theory is confirmed; if not, it is disconfirmed. (For a general

discussion see Glymore, 1980.) To the extent that people are probabilisticallv

incoherent, therefore, probability theory is disconfirmed, and they cannot be

regarded as "having" probabilities at all.

Fave we o-.erlooked the difference between descriptive and prescriptive theories?

Perhaps "operational definitions" make sense for probabilities because they form

* tart of a prescriptive theory. On the contrary, we suggest that there is a strong

and important parallel between theory testing, as we just described it, and

,rescriptive analysis (as we saw it in Section 2,4.5). Just as in descriptive

science, we assume the prescriptive theory to be true, use it to perform a set of

* interrelated analyses, and then test them for consistency. However, if we find

inconsistency among alternative prescriptive analyses, or between an analysis and

direct judgment, we do not (necessarily) drop the prescriptive theory; we ma"

choose to revise the values in one or more analyses so as to make them consistent.

....... 
d w w
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•n so doing, we construct rather than discover or confirm a probability model for

our beliefs.

e analogy between descriptive and prescriptive processes may be carried a step

further by recalling our observations in Section 2.2.3. If the inco;,sistency of

our judgments with respect to probability theory is great enough, and if

coherence-producing revisions seem implausible, we may indeed decide to reject

probability theory as a proper prescriptive guide.

S.hat then is left of the Bayesian claim that operational definitions are required

for clarity of concepts? The third and final misunderstanding we wish to address

is the notion that because "operational definitions" are arbitrary, and do not

guarantee the applicability or even the relevance of a prescriptive theory, that

behavioral specification is of no use. In fact, it is quite critical: without

t, there is no link, or else no clear link, between the prescriptive theory and

action. With it, the prescriptive process described above, in which a coherent

set of judgments is arrived at through successive iterations, also produces a

clear set of implications for action. In expert system applications, such im-

plications are typically the reason for developing the system. Moreover, such

specifications may play a clarifying role for the decision maker in the process of

iteratively arriving at an appropriate set of judgments. (We return to this point

i Section 2.5.11 below.) The existence of such specifications must, therefore,

be counted as a plus for the Bayesian theory.

2.4.7 Naturalness of inputs. Behavioral specification is not sufficient to

guarantee the usefulness of an inference framework. A common objection to

Bayesian theory urged by proponents of alternative views, is that the inputs it

requires exceed, in various ways, the capabilities of the decision makers it is

designed to aid. Two complaints of this type must, however, be carefully

distinguished:

Pprecision: Bayesians assume that experts are capable of quantifying their un-

certainties and values to an arbitrary degree of precision. But this is true of
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no other known process of measurement. Experts ma' simply not know, to the

* rcq1:ir&d exactitu&. what their beliefs or preferences are.

Incc,77!eteness of e'.idence: The evidence may not justify the degree of confidence

suggested by use of a single number to assess an uncertainty. Some assessments

(e.g., the probability that the Soviets will invade Western Europe within the next

year) are less well supported than others (e.g., the probability that a coin in my

pocket will land heads if tossed). In the former cases, the available evidence

may. justify no more than a range of probabilities rather than a single number.

There is an important distinction between these two complaints: the first is con-

sistent with the basic prescriptive adequacy of probability theory, but seeks to

accommodate human shortcomings in the assessment task. In contrast, the second

objection has a normative basis: probabilities themselves are inappropriate where

evidence is incomplete. ..'e shall explore these positions in more detail in our

discussions of Zadeh and Shafer, respectively.

2.4.S Concepts of uncertainty. Bayesian theory is clearly designed to capture

the ccncept of chance, or uncertainty about facts. We argued in Section 2.4.5

that an important gap in Bayesian theory is the lack of a measure of completeness

or quality of evidence, i.e., the lack of a distinction between firm probabilities

.* (.5 as the probability of heads on a coin toss) and those based on guesswork (.5

as the probability of a Soviet invasion). Intuitively, the weight of evidence

supporting some probability judgments is stronger that that supporting others. We

argued that this concept in fact plays an important role in ordinary applications

of probability theory, b; guiding the choice among potential revisions of belief

* in the light of an analysis or set of analyses. We hope to demonstrate below

(Section 3.0) that an explicit measure of this sort is critical for the control of

reasoning in an expert system that intelligently handles uncertainty about facts.

To ,,hat extent could Bayesian theory itself be extended to cover the concept of

completeness of evidence? Lindley et al. (1979) have recently attempted to for-

malize the intuitive notion that we are firmer about some probability assessments

than others. The tool they introduce is a second-order probability distribution
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over possible values of the true first-order probability. The spread of the
second-order distribution is a measure of the firmness of the original

* probabilities. Lindley et al. have described procedures for statistically ag-

gregating inconsistent probabilistic analyses by means of such second-order

judgments.

These efforts have failed, in our opinion, for a variety of reasons. Feasibility:

* The quantity and difficulty of required inputs is increased, rather than

decreased, to the degree that one's evidence is incomplete. Computational intrac-

tability will certainly be increased as well. Validity: Axiomatic justifications

and behavioral specifications which apply to first-order probabilities become much

less convincing at higher levels, where, for example, gambles or scores which

depend on one's own "true" probabilities, rather than actual events, lack

plausibility. Face validity is dubious as well: e.g., if we attempt to measure

the quality of our second-order probabilities in the same way, we are threatened

with an infinite regress. Perhaps the most serious difficulty, however, is the

* implausibility of the inferences to which this model gives rise. In brief, the

procedure for aggregating probabilistic analyses assumes that they disagree only

because of "noise," or random error, in the assessment process; hence, it yields

results which do not reflect the possibility that different analyses have drawn

on different evidence. We suggest that from a psychological point of view, dif-

ferent analyses may tap different portions of our store of knowledge. even when

performed by the same individual. These points are amplified in Cohen et al.,

1984. and in a planned paper by Cohen and Lindley.

2.4.9 Summary. Bayesian probability theory is strong in the formal aspects of

validity. Its logical foundations are perhaps uniquely compelling in application

to the concept of chance. However, the input and computational burdens which it

imposes, except when specialized models are adopted, are considerable. It has no

* adequ.ate resources for representing the quality of an inferential argument, and

requires an arbitrary degree of precision in numerical judgments. Even its

validity, in a more informal sense, can be questioned. Bayesian theory, as it

stands, implies that one's beliefs should be coherent but provides no guidance for

choosing among alternative equally coherent analyses. Moreover, by assuming that
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all assessments are based on the same evidence, it closes off the most promising

io'rce oF such guidance. We have argued that the application of Bayesian theory

t a :,roblem is not linear process in which aonclusions are computed from inputs.

It is (or often should be) an iterative bootstrapping process in which comparison

of conclusions arrived at by different methods leads to revision of inputs and

assuzDtions, until overall plausibility is maximized. This process of revising

probability assessments should be guided by a judgment of their quality. A more

satisfactory account of completeness of evidence is, therefore, essential.

2.5 Belief Functions

2.5.1 Nature of the theory. In the theory of belief functions introduced by

Shafer (1976), Bayesian probabilities are replaced by a concept of evidential

support. The contrast, according to Shafer (1981; Shafer and Tversky, 1983) is

between the -hance that a hypothesis is true, on the one hand, and the chance that

the evidence means (or proves) that the hypothesis is true, on the other. Thus,

we shift focus from truth of a hypothesis to the interpretation of the evidence.

As a result, the system (a) is able to provide an explicit measure of quality of

evidence, (b) is less prone to require a degree of definiteness in inputs that

exceeds the knowledge of the expert, and (c) permits segmentation of reasoning

into analyses that depend on independent bodies of evidence.

In Shafer's system, the support for a hypothesis and for its complement need not

add to unity. For example, if a witness with poor eyesight reports the presence

of enemy artillery at a specific location, there is a certain probability that his

eyesight was adequate on the relevant occasion and a certain probability that it

was not, hence, that the evidence is irrelevant. In no case could the evidence

prove the artillery is not there.

To the extent that the sum of support for a hypothesis and its complement falls

short of unity, there is "uncommitted" support, i.e., the evidence is incomplete.

7vIdential support for a hypothesis is a lower bound on the probability of its

being true, since the hypothesis could be true even though our evidence fails to

dem.onstrate it. The upper bound is given by supposing that all present evidence
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that is consistent with the truth of the hypothesis were in fact to prove it. The

interval between lower and upper bounds, i.e., the range of permissible belief.

thus reflects the incompleteness of evidence for that hypothesis. This concept is

not captured by Bayesian probabilities.

In Shafer's calculus, support m(,) is allocated not to hypotheses, but to sets of

hypotheses. Shafer allows us, therefore, to talk of the support we can place in

. any subset of the set of all hypotheses. In the case of three hypotheses, H1 , H 2

and H3 , for example, we could allocate support to H1 , H2 , H3 , (H1 or H2 ), (HI or

H31, [H2 or H3 ), and {H1 or H 2 or H 3). As with probability, the total support

across these subsets will sum to 1, and each support m(') will be between 0 and 1.

It is natural, then, to say that m(') gives the probability that what the evidence

means is that the truth lies somewhere in the indicated subset.

Suppose, for example, that we know in the case of three hypotheses that H3 is

false, but have no evidence to distinguish between H1 and H2 . In that case, we

would put m((H 1 or H 2)) = 1, and give zero support to all the other possible

subsets. Alternatively, we may feel that the evidence either means that H3 is

true, or that (H1 or H3 ) is true, or that it is not telling us anything (i.e., fH1

or H2 or H 3) is true), and that the weight of evidence is just as strong with each

possibility. In that case m(H 3 ) = m({H 1 or H3)) = m((H 1 or H 2 or H3 )) - 1/3. In

a Bayesian analysis, arbitrary decisions would have to be made about allocating

probability within these subsets, requiring judgments that are unsupported by the

e-.idence.

This same device, of allocating support to subsets of hypotheses, enables us to

represent the reliability of probability assessments. Suppose, for example, that

the presence of texture X in an image region is associated with a building 70% of

the time and with other labels 30% of the time, based on frequency data from a set

of training photographs. If we are confident that an image now being analyzed is

representative of the training set. we may have m(building) = .7 and m(other) =

3. But if there is reason to doubt the relevance of the frequency data to the

present problem (e.g., due to geological or cultural differences between the two

geographical areas), we may discount this support function by allocatinglsame per-
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centage of support to t-.e universal set. For example, with a discount rate of " -

3 , ~we get building .49. m(other" = .11. and m ( building. otherl) = .3(:.

-lie latter reflects the :hance that the freciencv data is irrelevant. _.

Shafer's belief function Bel(*) summarizes tne implications of the m() for a

civen subset of hypotheses. Bel(A) is defined as the total support for all sub-

sets of hypotheses contained within A; in other words, Bel(A) is the probability

that the evidence implies that the truth is in A. The plausibility function Pl()

is the total support for all subsets which overlap with a given subset.

Thus, P1(A) equals I-Bel(A); i.e., the probability that the evidence does not

imply the truth to be in not-A. In one of the examples above, with

m(H 3 ) = m({H 1 or H3 )) = m()H 1 or H2 or H 3)) - 1/3,

we get:

Bel(H 3 ) = m(H 3) - 1/3; P1(H3 ) = I-Bel({H 1 or H2 )) = 1

Bel((H 1 or H 3)) = m(H 3 ) + m((H 1 or H 3 )) = 2/3; Pl((H1 or H 3)) = I-Bel((H 2)) i.

2.5.2 Dempster's rule. Thus far, we have focused on the representation of uncer-

tainty in Shafer's system. For it to be a useful calculus, we need a procedure

for inferring degrees of belief in hypotheses in the light of more than one piece

of evidence. This is accomplished in Shafer's theory by Dempster's rule. The es-

sontial intuition is sin ly that the "meains' of the combination of two pieces of

r:idence is the intersection, or common ele.ent, of the two subsets constituting

,eir separate meanings. For example, if evidence E1 proves {HI or H2 ), and

evidence E2 proves (H2 or H 3), then the combination El + E2 proves H2 . Since the

• t wo pieces of evidence are assumed to be independent, the probability of any given

corombination of meanings is the product of their separate probabilities.

be a set of hypotheses H1 , H2 . . . . . .. and write 2X for the power set of V

* that is, the set of all subsets of X. Thus, a member of 2X will be a subset of

h:.-potheses, such as 0H2 - H 5 , H 7 ), H3 , or IH1 H 2 . H3 , H4 ), etc. Then if ml(A) is

the support given to A b-. one piece of evidence, and m.2(A) is the support given by

a second piece of evidence, Dempster's rule is that the support that should be

- 2z



given to A by the two pieces of evidence is:

z m1 (Al)m2 (A 2)j
ml 2 (A) =__________

1 -j, ml(Bl)m(B)

The numerator here is the sum of the products of support for all pairs of subsets

A 1, A2 whose intersection is precisely A. The denominator is a normalizing factor

which ensures that ml2 (') sums to 1, by eliminating support for impossible

combinations.

Consider, for example, the following two support functions:

Table 2-1

________ ml(*) m2C) m12")

H1  0.2 0.1 0.344
H2  0.1 0.3 0.250
13  0.3 0 0.172

H H2  0.1 . 0.3 0.125
H H3  0.2 0 0.063
H H3  0 0.1 0.016

H H H3  0.1 0.2 0.031

i'n the third column, we have used Dempster's rule to compute m1 2(~) For example

Mi(H1H2 )m2(HlH2 )+ml(HlH2)m2(HlH2H3)+m1 (HlH2H3)m2(HlH2)
ml2(H1 H2) 1-C

.&:iere C = m1(H1 )[m2(H2) + m2(H3) + m2(H2H3)] + ml(H 2 )lm 2 (Hl) + m2 (H3 ) + m ,(HlH3)]

+ m1H3)m 2(H) +m 2 (H 2 ) + m9-(HlH2 )] +m(H 2)m2(113) + ml(HlH3 )n-2(H 2o -

+ ml(ii2 H3 m2(111)

0.lxO. 3+0. lxO.2+0.lxO.3
an om 1 2(H1H'2) 1 - 0.36 015
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Let us no,. examine the performance, or at least the potential, of Shafer's theory

thin our evaluation framework.

2.5.3 Feasibility: Quantity of inputs. One of the main difficulties standing in

the ..ay of a Bayesian analysis is its complexity. At first sight the Shaferian

approach seems simpler, since complicated independence judgments and conditional

probability assessments appear not to be required. This appearance is illusory.

*Support functions must be assessed over not just the hypothesis set, but over the

po-.:er set of the hypothesis set. With 10 hypotheses, for example, the support

distribution has 1,023 elements. For both Bayesian and Shaferian models, the

required number of assessments or judgments increases exponentially with the num-

ber of events or hypotheses. To see the parallel, compare the Bayesian rule:

Pr[A or B] - Pr[Al + Pr[B] Pr[A]Pr[BIA]

with Shafer's rule:

Bel((A or B)) = m(A) + m(B) + m((A or B)).

In each case, to get an uncertainty measure for a disjunction (i.e., a member of

2x', we must make one assessment in addition to the measures already assessed for

the elements. For Bayesians, the extra assessment is a conditional probability

PrB'A!; for Shaferians it is the direct evidential support m([A or B)).

Shaferian response to this, in parallel with the Bayesian response (Section

2. .2), is that specialized models may be developed that require far fewer

assessments. In fact, the belief function framework admits a variety of interest-

in special cases: e.g.,

0 simple support functions: all support goes either to some one in-
dividual hypothesis or to the universal set X, i.e., either the
evidence is reliable and pinpoints the answer or it is totally
untrustworthy;
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0 discounted probabilistic support functions: all support goes to in-
dividual hypotheses (as in a standard probability distribution), with ]
some additional support possibly going to the universal set X
(reflecting a judgment of the quality of the evidence for the prob-
ability distribution);

0 consonant support functions: all support goes to a nested series of
subsets of hypotheses; i.e., the evidence points in a certain direc-
tion but is unclear how far we should go;

0 hierarchical support functions: the evidence supports subsets of
hypotheses that can be arranged in a tree.

Here again, however, (as in the Bayesian case) complex and difficult judgments

must be made to determine that a particular specialized model is applicable,

before savings in quantity of assessments can be realized.

d The problem for Shaferians may even be deeper. The applicability of Dempster's

rule to two bits of evidence E 1 and E2 is not automatic. It requires rather care-

ful and difficult consideration of a whole set of independence assumptions. We

shall return to this point in our discussion of the validity of Shafer's theory

(Section 2.5.5).

2.5.4 Computational tractability. Here again the story is parallel to the

Bayesian case. The employment of unrestricted belief function models would in-

volve prohibitive computation. As a result, Gordon and Shortliffe (1984) propose

to modify Dempster's rule to simplify computation in MYCIN. Shafer (1984a) has

argued in response that ad hoc modifications of this sort might be avoided by a

control strategy that intelligently exploits the structure of restricted belief

function models, such as the hierarchical structure proposed for MYCIN. Here as

in the Bavesian case, feasibility is purchased only in special cases, and,

evidently, at the cost of complex and subtle judgments regarding the structure of

the oveiall argument.

2.5.5 Validity: Semantics. Shafer argues that the requirement for a behavioral

specification of probabilities is irrelevant. People bet in a certain way because

of their beliefs and preferences; observing their own betting behavior will not

I
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hep them to assess those beliefs. Shafer thus urges a shift from the positivist

t a more cognitive orientation. He argues that uncertainty' is quantified on the

asis of an analogy between one's problem and a "canonical example". In Bayesian

modeling, we assess the probability of an event by comparing its likelihood with

the likelihood of a frequency-based event, such as a random drawing from an urn.

Thus, for Shafer, to say that the Bayesian probability of an event is x is to say

that it is "like" the chance of drawing a white ball from an urn with a proportion

of white balls equal to x. Similarly, to say that your Shaferian belief in a

proposition is y, is to compare it to canonical examples of the type we shall ex-

plore in Section 2.5.6, where the reliability of an evidential source is deter-

mined by chance.

Unfortunately, Shafer's position is weakened by two considerations: First, his

canonical examples, as we shall see below, are far more complex and less obviously

* useable, even from a cognitive point of view, than the Bayesian examples. Second,

behavioral specification probably plays a cognitive role in clarifying the sense

of a canonical example. For example, what does it mean to say that my uncertainty

about whether an object is a building is "like" my uncertainty about drawing from

an urn? In what respects must they be similar? Many people will find it il-

luminating when told it means that I would bet at equal stakes on either event.

A major strength of Shafer's theory, nevertheless, is the naturalness of the input
format it imposes:

Assessments need go no further than the evidence justifies. As we
have seen, "ignorance" is naturally represented by assigning support
to a subset of hypotheses, with no further commitment to an allocation
within the subset. A Bayesian must decide among quite definite and
distinct, but equally arbitrary, allocations of probability.

0 Weight or completeness of evidence is quite intuitively represented as
the degree to which the sum of belief for a hypothesis and its comple-
ment falls short of unity.

0 Assessments may be based on distinct, separable bodies of evidence,
rather than requiring--as in Bayesian theory--that all assessments be
based on all the evidence.
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2.5.6 Face validity. Belief function theory possesses no deep axiomatic jus-

tification com-arable to the de Finetti and Lindley arguments for Bayesian theory.

,ot coincidentalv, however, Shafer has offered a view of model "validation" which

contrasts sharply with the axiomatic approach. On Shafer's view (1981; Shafer and

Tversky, 1983), theories of inference are tools which can be used to help us con-

struct (rather than elicit or discover) a set of probabilities. The justification

for applying a particular tool to a particular problem is that we see an analogy

between that problem and the canonical example underlying the theory. For

example, to the extent that the Bayesian theory has anything to contribute, it is

by establishing a persuasive analogy between your problem and a situation, like

drawing balls from an urn, where the truth is generated by known chances.

Bavesian analogies of this sort, according to Shafer, will usually be imperfect,

*because in the canonical example we know the rules of the game that determine how

the truth is generated (e.g., the composition of the urn and the procedure for

drawing a ball). In real problems, there are nearly always many aspects of the

situation where comparable rules cannot be given without making numerous

assumptions. When these assumptions become very extensive, it may be better to

switch to a simpler kind of model, which is more plausible despite not giving a

complete picture of how the truth is generated. Such simpler models can be based

on canonical examples in which the meaning of the evidence rather than the truth

is generated by known. chances.

.e comment on Shafer's position at two levels: First, how convincing is his con-

cept of validity? Second, how plausible or useful are the canonical examples un-

derlying belief functions?

2.3.7 Concert of validity. For Shafer, validity reduces to face validity and

plausibility of instances. His argument for this position, however, contains some

confusion. Shafer mistakenly assumes that the adoption of an axiomatic framework

iorlies a belief in pre-existing rather than constructed probabilities. Thus,

Shafer (1984a) speaks derisively of assessment in the Bayesian context as

"pretending" that one already has probabilistically coherent beliefs and

preferences, and then, somehow, "trying to figure out what they are."
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Our own view is that Shafer is correct to re&ard Drobability frameworks as tools

for the construction, rather than disco-.'erv, of ;robabilities. But he is wrong in

supposing that the axiomatic derivation of a framework detracts from this role--as

long as we understand, as argued in Section 2.2.3, that axiomatic derivation is

only one argument in favor of a given framework. If taken seriously, Shafer's ar-

gument would declare as "non-constructive" any set of prior constraints on the way

uncertainty is represented or manipulated; thus, it applies as strongly against

belief functions and Dempster's rule as to Bayesian probabilities. The solution

in our view is not to drop constraints, but to drop the view that any particular

set of constraints is inevitable. Thus, probability assessment as we understand

it (Section 2.4.5) is an iterative and constructive process, in which a tentative

framework (e.g., Bayesian or Shaferian) is adopted, assessments are made within

the framework, checked for consistency, and revised; if the overall result is un-

natural or implausible, the framework itself may be rejected or revised. In other

words, "pretending" that a framework is correct is a legitimate strategy in uncer-

tainty assessment; indeed, it is the only possible strategy. A framework is of

use as a tool precisely because it does impose (tentative) constraints on the

assessments that are produced. It challenges the expert to actively shape a pre-

viously disorganized and perhaps even unverbalized set of beliefs. It serves as a

medium or language in which the expert "thinks" about uncertainty and in which he

expresses those thoughts. A supposedly "neutral" framework, that imposed no for-

mat or structure, beyond that already present, would not help the expert in the

process of construction and could not advance his or our understanding of his

beliefs. (See Cohen, Mavor, and Kidd, 1984, for a more general argument in the

context of knowledge engineering.)

In sum, Shafer's argument for a constructive process of probability assessment is

correct. But he appears to have drawn two unnecessary conclusions: (1) It in no

way contradicts the added plausibility that may be lent to a framework by the ex-

isterce of an axiomatic derivation; and (2) it should not blind us to the impor-

tance of the iterative strategy of tentatively adopting a framework and testing

its implications.
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2.5.8 Shafer's canonical exarpvle. As noted above, when we apply a belief func-

tion analysis, we "pretend" that thre meaning of the evidence is generated by known

chances. In order to evaluate Shafer's theory in terms of face validity, we must

examine this analogy more closely. In particular, we must focus on the indepen-

dence assumptions embodied in the canonical example which are required to license

an application of Dempster's rule. It turns out that these assumptions are the

primary constraints imposed by Shafer's theory on the process of evaluating

evidence; hence, they are its main contribution to the "construction" of probabil-

ity judgments. They have also been the major source of controvery between Shafer

and Bayesians. Early critics of Shafer's work (e.g., Williams, 1978) complained

about the obscurity of Shafer's notion of "independent evidence." In a recent

paper, however, Shafer (in press) has clarified this concept considerably.

Shafer's interpretation of belief functions involves two sets of hypotheses (or

"frames") as shown in Figure 2-3. One frame, S, is a set of background hypotheses

which concern the state of the process that produced the evidence at hand. For

example, if the evidence E1 is a witness's testimony that he saw artillery in a

certain location, the frame S may simply be the two possibilities (the witness is

reliable, the witness is not reliable). The other frame, T, contains the

hypotheses of pzimary interest, e.g., {the artillery is present, the artillery is

not present). To get a belief function, we only need (i) a probability distribu-

* tion over S, i.e., standard probabilities P1 and P2, for the reliability and un-

reliability of the witness; and (ii) a mapping from S to T based on the content of

the evidence. Since the evidence is the witness's report of artillery,

reliability in S maps onto (the artillery is present) in T; unreliability in S

maps onto the set {the artillery is present, the artillery is not present) in T.

Support m(A) for a subset A in T is just the probability for hypotheses in S that

map only onto A. (We have referred to this, somewhat loosely, as the probability

that the evidence "means" A). Bel(A) for a subset A in T is the sum of the prob-

--- abilities for hypotheses in S that map onto subsets of T that are contained in A.

Thus, in our example, Bel(artillery is present) P F1 ; Bel({present, not present))

= 1 + P2"
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FRAME S FRAME T

P Witness is __________________ Artillery is
Reliable Present

P? Witness is Artillery is
Unreliable Not Present

E Witness Says

Artillery is Present

Illustration of Canonical Example
* For Belief Functions

Fi-gUre 2-3
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Suppose we now receive a second piece of evidence, E2 , which is the testimony of a

stccnd witness that he saw aftillery in the same vicinity. We define a new belief

function for this witness by specifying a frame S 2 with the elements (the second

witness is reliable, the second witness is unreliable), and by assessing probabil-

ities Pi' and P2 ' over S2 . What is our new overall belief in the elements of T?

Naming S as S1 , Figure 2-4 shows a new frame, SIXS 2, which results from combining

elements of S1 and S2. Each cell has a probability which is the product of the

• probabilities of the elements from S1 and S2; and each cell is mapped onto a sub-

set of hypotheses in T, based on knowledge of E1 and E2 . According to this map-

ping (as shown by the labels in the cells), support for the artillery being

present equals the chance that either witness i or witness 2 is reliable, i.e.,

PIPI ' + PIP 2 ' + P2PI'. This is the result given by Dempster's rule.

.%hat if the report of the second witness contradicts, rather than confirms, the

first? That is, E2 is a report that artillery is not present in the specified

location. In that case, the new frame, SIXS2 , appears as in Figure 2-5. The only

change is in the mapping of the cells to subsets in T--a change required by the

change in E2 . It turns out, however, that the cell corresponding to both wit-

nesses being reliable does not map to any subset in T. Since E1 and E2 are

contradictory, both cannot be true. Thus, we use our knowledge of E1 and E2 to

prune out impossible cells in SIXS 2 . According to the mapping, support for artil-

lery being present equals the chance that witness 1 is reliable and witness 2 is

unreliable, i.e., PIP 2 '/(I-PIPI'), normalizing to remove the impossible case.

Once again, this is the result of applying Dempster's rule.

In many of Shafer's discussions, he appears to argue that Dempster's rule is jus-

tified in situations which "resemble" this canonical example, because it is the

correct rule for the example (just as Bayesian rules are correct for the case of

drawing balls from an urn). But what makes it correct? Even these simple ex-

* rramples may seem too complex for such a direct appeal to intuition. A recent paper 7-

-y S.afer (in press) contains a more extensive discussion of the preconditions of

DeTster's rule. We can use Dempster's rule, he says, only if the following judg-

:rE-ts are made:
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FRAME S 1X S2

Artillery Artillerv
Reliable Present Present'

V'itness 2

Not Artillery {LArtillerv Present,
*Reliable Present Artillery Not Present}

(P 2
1) (P 1 P2 ) I(P 2 P2'

Reliable Not Reliable

(P) (P 2

Witness 1

Canonical Example For Combination
* of Concurring Evidence

Figure 2--
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FRAME S X S2
1..,2

Reliable Artillery Not

Present

(P (P 2 P 1

Witness 2

Not Artillery --Artillery Present,
Reliable Present Artillery Not Present;-
(P2 (P P2) (PIP2'

Reliable Not Reliable

(P1) (P2)

~.1

Witness 1

Canonical Example For Combination
of Conflicting Evidence

Figure 2-5
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-t-orc consideration of the mapping to T, any hvpothesis in S is com-

:,i-ib1e'.:irh any': ..'pothesis in S- (so SlxS2 can be defined as a new

(b) ?L for elements of S- are independent of elements in S2
e.g .,we do not alter our estimate of the reliability of one witness

based on the reliability or unreliability of the other witness).

(c) If we could draw a conclusion about the truth of a subset in T by

knowing that a certain combination of hypotheses from S1 and S2 was

the case, then we could have drawn the same conclusion by knowing that
-. either one or the other of the hypotheses (from S1 or S2) was the

case. (In the example of concurring witnesses, we can conclude that

artillery is present if both witnesses are reliable; but all we needed

was one or the other to be reliable).

(d) The evidence we use for assessing S1 and S2 tells us nothing more

directly about T. (All the work of reasoning about T is transferred
to reasoning about S.)

Ha.-ing enumerated these assumptions, we must remark that our original question

about the rationale for Dempster's rule remains unanswered. It has not been

.- demonstrated in any way that Dempster's rule "follows from" these preconditions.

Perhaps Shafer means simply that when these particular conditions are met,

Dempster's rule will appear more plausible or natural.

:ote, however, that the canonical situation described by these conditions includes

a chance model: Because of assumptions (a) and (b), the probability for a com-

ponent of S1 XS2 is simply the product of the probabilities assigned to the com-

,:o:-ents of S1 and S2 . It is tempting, therefore, to view the belief function

model as a special case of a Bayesian analysis, defined by the restrictions out-

lined in (a) - (d). In that case, Dempster's rule should be justifiable from (a)

* -(d' by the rules of probability theory. Moreover, Shafer's model would then in-

herit the axiomatic justification of the Bayesian model in the special cir-

cu:: szances where it applied.

2.. .v.esian foundation for belief functions? To see how this might wor.

cc.::rider the simple case of Figure 2-3, with H = the artillery is present, H = the

artillery is not present, R = the first witness is reliable, and R - the first

.:-ess is not reliable. It follows from probability theory that:
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Pr(H) = Pr(H[R)Pr(J . + Pr(HJR)Pr(R).

Following Shafer's definitions, we interpret m(H) as Pr(R) and m(H or H) as Pr(R).

In addition, from our knowledge of E1 (i.e., the mapping from S1 to T which it

esablishes), aid using (d), we know that Pr(HIR) - 1; if the witness is reliable,

---cn the artillery is present. Hence, we may write

Pr(H) m(H) + Pr(H!R) m(H or H)

and this gives

Bel(H) - m(H) Pr(H) m(H)+m(H or H) - P1(H),

.:here Bel(H) and P1(H) are Shafer's belief and plausibility functions. It

apTears, then, that the belief function analysis is simply an incomplete Bayesian

analvsis. Our uncertainty about Pr(H) is due to our failure, in the belief func-

tion approach, to specify Pr(HIR), i.e., the chance of the hypothesis being true

despite the fact that the present evidence is unreliable. This is just another

*aV of saying that Shafer is interested in the proof of the hypothesis, not its

truth. If Pr(H]R) = 0, Pr(H) = Bel(H); and if Pr(HIR) 1, Pr(H) = P1(H). Thus,

e1(H) and P1(H) give lower and upper bounds for the Bayesian probability.

e-t us now see how Dempster's rule works within this Bayesian interpretation. Let

R, and R2 refer to the reliability of the first and second witness, respectively,

and take the case where El and E2 agree. A Bayesian probability Pr('*), is a

function of two arguments, the event and the evidence. Presumably, therefore, in

-sing Dempster's rule, the probability to be bounded is Pr(HIE1 ,E 2 ). Let us for

the moment, however, ignore this consideration and use Pr(H). (Note that in the

-ase of one piece of evidence, we likewise used Pr(H) instead of Pr(HIEI).) BV

robilit'; theory, we have

Pr(H) = Pr(HlR 1 or R 2 )Pr(R1 or R2 ) + Pr(HJRI or R2 )Pr(R 1 or R 2 ). .-

2-41



0. W T v-

1-3Lsed on conditionis (a) arnd (b) we have

Pr(H) Pr(HJR1 or Rq-rPr(R-)+Pr(R,)-Pr(R-)Pr(Ry +~ Pr(HIR R2)rR>rR)

By Dempster's rule,

ml2 (H) =Pr(Rl) + Pr(R 2) -Pr(R 1 )Pr(R2)

m2Hor H) =?r(R 1 )Pr(R2)-

Using (c) and (d) and the mapping from SlxS2 to T, Pr(HIR1 or R2) =1. Therefore,

Pr(H) =ml 2 (H) pPr(HI~l72)ml 2 (H or Hf).

- It follows that

Bel2(H =ml 2 (H) <Pr(H) ml2(H) + ml2(H or H) -Pl 1 2(H).

Thus, Bel(H) and P1(H), when computed by Dempster's -ule, continue to give upper

and lower bounds for PrO-i). (Note, however, that Bel(*) and Pl(' are not bounds

* on what the future probability could be, given further evidence. They are bounds

o,, Pr() implied by our preser r evidence.) A similar demonstration can be given

-or :ne case where Eand E2conflict. This approach can be generalized to the

* case where support is assigned to arbitrary subsets of hypotheses by regarding

* "reliability" as a set of separately assessed skills involved in discriminating

subsets of hypotheses from their complements.

The problem, of course, is that we have not justified Dempster's rule as a bound

on --he Bayesian probability, Pr(HIE1 E2). When we conditionalize on the evidence,

as ,.e certainly must in a Bayesian analvsis, Pr(Rl or R) is replaced by

Pr(Rl or R21E1 E?) Pr(R< EIE2) + Pr(R 2 'ElE2) -Pr(RllElE 2 ) Pr(R 21ElE2R1).
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. This brings out a curious and critical feature of Shafer's theory. He is asking

" us to assess the reliability of a witness (or more generally, the status of an

evidentiary process) without taking into account our knowledge of what the witness

said. In Shafer's canonical example, knowledge of the evidence enters in only for

the mapping from S to T, after all the probability work has been done on S. In a

Bayesian analysis, on the other hand, the credibility of a witness can be shown to

depend both on what is said and on its prior probability, i.e., our original ten-

dencv to think it true. If a witness says something which is independently

believable, our estimate of his reliability increases. More importantly, perhaps,

the credibility of one witness can, in a Bayesian analysis, be increased by cor-

roboration of a second witness, and decreased by contradiction.

Assumption (b) is plausible only in light of this restriction. The strict

Bayesian version of (b) is

Pr(R 2jEIE 2RI) - Pr(R 2 lEIE 2 ).

Note that EIR 1 implies H, i.e., if witness 1 is reliable and says H, H is true.

But we would expect, quite generally, that Pr(R 2IE 2H) > Pr(R 2 1EIE 2 ), i.e., learn-

ing for a fact that what the witness said is true increases his credibility more

than corroboration by a second witness. On the other hand, if we are assessing a

;.itness's reliability prior to (or without consideration of) his testimony, it

Coes make sense to require that his reliability be independent of the reliability

of another witr.ess. We thereby preclude shared uncertainties (e.g., a conspiracy)

in the two evidential processes being combined.

A group of Swedish researchers, whose work is summarized and extended in Freeling

and Sahlin (1983), and Freeling (1983), has explored issues such as this. Like

Shafer, they focus on the reliability of the evidence, rather than the truth of

the hypothesis, i.e., they reject the traditional Bayesian effort to model the

clhance of a hypothesis when the evidence is unreliable. But unlike Shafer, they

analyze reliability in the light of the evidence, as Pr(RIE) rather than Pr(R).

In effect, this is an effort to give a proper Bayesian account of the notion of

quality or completeness of evidence, rather than truth. (As such, it is an alter-

p
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native to the idea of sezord-order probabilities discussed in Section 2.4.8) Te

u-F .c of tlis research i that if m(H' is equated vith PRJPRIE), Dertster's ru!e

canvrt in gereral be justified. Depending on the character of the belief func-

tions being combined, and the kinds of conditional dependence assumed in the

Bayesian analysis, Dempster's rule may be correct, a good approximation, or en-

tirely off the mark in comparison to the "proper" Bayesian rule of combination.

While it fails to fully validate Dempster's rule, the Swedish work also lacks

most, if not all, of the virtues of the belief function representation. In terms

of feasibility, formulations which conditionalize on the evidence become extremely

complex even for the simplest examples. The Swedish group has made little

progress in deriving rules for the combination of evidence involving the full

range of cases to which Dempster's rule applies, in particular, where varying de-

- grees of support are assigned to arbitrary subsets of hypotheses. Moreover, the

* requirement to assess prior probabilities is incompatible with the segmentation of

evidence which is vital for the naturalness of inputs in Shafer's system.

Shafer (in press) explicitly rejects the attempt to provide any sort of Bayesian

foundation for belief functions. Arguments based on DemDster's rule "have their

... own logic"--based on the appropriate canonical examples and an intuitive convic-

- tion that the appropriate cnditions of independence are satisfied. As noted

. above, Shafer's appeal to intuition has not entirely succeeded in making that

"logic" clear. We propose, however, that it can be clarified. In opposition to

both Shafer and the Bayesians, we would argue the merits of the pseudo-Bayesian

analysis of Bel(*) and P-(') as bounds on Pr(*), which we illustrated in this

section. It fails to derive Dempster's rule as a special case of probability

theory. Nonetheless, it clarifies the relationship of Dempster's rule to the

canonical example, by an argument that resembles a valid Bayesian argument in most

respects. Moreover, the dissimilarity can be crisply and clearly stated: the ar-

gument concerning reliability is conducted without consideration of the content of

the evidence. The latter can be regarded as an explicit decision, justified by

enormous gains in the simplicity and power of the calculus. This is not

equivalent, however, to a fixed belief that the content of evidence is irrelevant.

In an iterative, bootstrapping system, we can guard against the pitfalls of that

2-
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assumption by continually reexamining it as an analysis proceeds. In Section 3.0

we explore the design of a system in which the function of recalibrating sources

of e'.idence in light of corroboration or conflict is assigned to a process of

"- . qualitative reasoning.

"- 2.5.10 Role of the assumptions in constructing an analysis. Conditions (b) and

(c) play an important role as constraints in the construction of a belief function

analysis. Violation requires reassessment of the overall structure of an

analysis, redefining frames for either S or T or both (cf., Shafer, 1984a).

(c) says that elements from both witnesses' testimony must not be required in or-

der to construct a chain of reasoning that gets us to T. For example, if one wit-

ness said p and the other said p-*-q we would need to assume both were reliable to

infer q. Therefore, these two statements must be counted as parts of a single

* evidential argument. In this sense, Dempster's rule combines self-contained

"arguments" rather than "bits" of evidence. And application of the rule presup-

poses a more global process of reasoning addressed to problem structuring.

r

(b) and (c) represent a limitation on Dempster's rule in a second sense: Once our

evidence has been segmented into independent arguments, we can combine it by

Dempster's rule, but that rule tells us nothing about how two dependent pieces of

.. evidence should be combined within a self-contained argument. For example, if we

know "most C3 installations are large rectangular buildings" and "most large

buildings are near a road." what can we say about the chance that an object, known

* to be a C3 installation, is near a road? Clearly, in any expert system

application, Dempster's rule must be supplemented by other forms of inference.

Interestingly, in a recent paper, Shafer (1984a) himself suggested that expert sys-

tems will have to make provision for dependent evidence, and that the full range

I of Bayesian operations can be applied on probabilities for the background frame,

S. This is a departure from the position that only Dempster's rule is appropriate

for combining evidence in the belief function context.

.:e have now noted three different ways in which an expert system application of

Shafer's system might need to be supplemented:
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0 recalibration of sources o: evidence in terms of the content of the
evidence,

0 r&:raming evidence and h.c:heses to achieve independence of
arguments, and

0 reasoning about dependent evidence within an argument.

We may refer to this set of issues as the incompleteness of Dempster's rule, in

analogy to the incompleteness of Bayesian theory discussed in Section 2.4.5. The

system of qualitative reasoning proposed in Section 3.0 addresses all three.

2.5.11 Plausibility of instances: Conflict of evidence. To what extent does

belief function theory yield inferences which are intuitive and plausible in

specific applications? A topic of special concern in this regard is conflict of

evidence. Zadeh (1984b) recently raised an example of the following sort. Sup-

pose we have two experts who we believe to be very reliable and who produce con-

flicting judgments. For example, there are three possible interpretations of an

object x in a specified location: Hl--x is a field; H2--x is a forest; H3--x is a

building. Analyst A, using photographic evidence, assigns .99 support to H1 and

.01 to H2 ; analyst B, using independent intelligence information, assigns

.99 support to H3 and .01 to H2 . We have the following two support functions, and

may combine them by Dempster's rule, as shown in Figure 2-6:

Table 2-2

mA( mB-) mAB(')

H1  0.99 0 0

H2  0.01 0.3l 1.00

H3  0 0.79 0

The counterintuitive result, according to Zadeh, is that exclusive support is now

assigned to H2 , a hypothesis that neither expert regarded as likely. Moreover,

the result is independent of the probabilities assigned to H1 or H3.

1l
I
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Figure 2-6. Support Functions to Illustrate Combination of
Conflicting Evidence by Dempster's Rule
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Sh-afer's response (in press) is cogent, but ultimately, we feel, off the mark. If

really regard these e:.:perts as perfectly reliable, Shafer says, the argument as

stated is correct. After all, A says that H3 is impossible, and B rules out H

that leaves H 2 as the only remaining posribility. (It is important to note that

..actly the same result would be obtained in Bayesian updating, if we interpret

the m(*) as likelihoods of the evidence given the hypothesis and assume that prior

probabilities for the three hypotheses are equal.) On the other hand, Shafer

argues that experts are seldom in fact perfectly reliable. A more reasonable pro-

cedure would Le to "discount" the belief functions supplied by the experts to

reflect our degree of doubt in the reliability of their reports. In discounting,

we reduce each degree of support by a fixed percentage, and allocate the remainder

to the universal set [HIH2,H3). The result of applying Dempster's rule will now

be a belief function that assigns support to all three hypotheses.

Let us examine this response in a bit more detail. Recalling that we regard these

experts as highly reliable (though not perfect), suppose we discount A's belief

function by 1% and B's by 2%. The result is the following, as depicted in Figure

2-7:

Table 2-3

mA(" )  mB(') mAB()

H I  0.9801 0 .656

H 2  0.0099 0.0098 .013

H3  0 0.9702 .325

{H 1,H2 ,H3) 0.01 0.02 .007

.e now have a "bimodal" belief function, with the preponderance of support going

to H1 and H3 . This appears, at first look, to be an intuitively plausible result:

it reflects our feeling, which we represented in the form of ( -count rates, that

A or B (or both) could possibly be unreliable. But let us look little more

closely.

W
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The first thing to note is what a vast difference a small amount of discounting

makes. in Table 2-2, after combination by Dempster's rule, there was exclusive

support for H2 . In Table 2-3, final support for H2 is only slightly greater than

1%. The second thing to notice is the large discrepancy between mAB(Hl) and

mAB(H2). Although we did in fact discount B at twice the rate as A, the actual

numbers (2% and 1%, respectively) and the difference between them were very small.

It is by no means clear that the resulting difference in support for H1 and H3 is

intuitively plausible. More to the point, the sensitivity of the result for all

three hypotheses to very small differences in discount rates is disturbing.

Finally, to dramatize the sensitivity even further, note that if support for

{HI,H 2 ,H3) were 0 for both experts, and if A assigned 0 support to H3 , and B as-

signed 0 support to H1 , these very small changes render Dempster's rule

indeterminate.

Perhaps the problem is that our original assessment of the reliability of the ex-

perts was mistaken. Suppose then we discount A by 29% and B by 30%. We now get:

Table 2-4

mA" roB(') mAB(_)

H1  .7029 0 .4243

H2  .0071 .007 .0085

H, 0 .693 .4044

9 {HIH 2,H3} .29 .30 .1751

Support for H1 and H2 after combination is now roughly equal, certainly a more in-

tuitive result. Then should we have discounted A and B more in the first place?
S

According to Shafer, presumably, this is indeed the case; the fault is not in the

theory, but in the initial allocation of support. The example, however, high-

lights a deeper problem. As we noted in Section 2.5.5, reliability is to be

assessed as if we had no knowledge of the evidence actually provided. Thus, we

2
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are apparently not permitted to use the conflict between A and B as a clue regard-

ing tneir capabilities or as a guide to the appropriate amount of discounting. We

return to this issue verv shortly.

Zadeh himself objects to the procedure in Dempster's rule of normalizing support

measures to eliminate impossible combinations. But we think this objection is

mistaken. Normalization is in fact the only way in Shafer's theory (albeit quite

indirect) that our knowledge of the evidence enters into the assessment of

reliability. It accomplishes a sort of de facto discounting as a function of con-

flict of evidence. Note in the earlier example of Figure 2-5 that the reliability

of witness 1, after combining his testimony with the conflicting evidence of wit

ness 2, is PIP 2 '/(l-P 1 PI'). This is less than PI, the original assessment of

witness l's reliability.

Although normalization is in itself not problematic, nevertheless, it is not a

complete or adequate solution to the problem of conflict. First, because there is
no lasting effect on later problems, i.e., we have not truly updated our estimate,

Pi, of A's reliability in the light of his conflict with B. Second, there is no

procedure for exploring potential reasons for the conflict. A closer examination

of (a) the factors that determined our original reliability estimates, (b) our as-

sumptions regarding independence of the two arguments, and (c) the internal struc-

ture of the arguments employed by A and B, might lead to a revision in beliefs and

assumptions that permanently improves our knowledge base.

We argue, then, that the revision of reliability estimates is only one possible

* result of an iterative, constructive process of problem solving prompted by con-

flict of evidence. (We also have the options of reraming evidence and hypotheses

to reflect revised judgments of independence and of revising specific beliefs in-

ternal to the conflicting arguments. These are the alternatives outlined at the

conclusion of Section 2.>.10). Therefore, such revisions must be justified by

considc rations which, once discovered, carry weight independent of the conflict of

evidence that led to th-ir discovery. Ideally, these newly discovered factors

could be regarded as sufficient to justify revisions in reliability estimates in-

dependently of E 1 and E2  (Referring to these factors as F, we would have
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P rR 1 EIEF) = Pr(RIIF).) This justifies the reassessment of reliabilities in the

"-iht of the evidence in the Shafer-Dempster system, and is the method implemented

the system to be described in Section 3.(

2.5.12 What is "conflict of evidence"? So far, we have taken for granted the no-

"ion of conflicting evidence, and that in some cases at least special steps are

justified in dealing with it. But it is by no means obvious what "conflict" is,

or why steps outside the normal calculus of uncertainty should be required to

handle it. Conflict of evidence does not appear, on the surface, to be the same

as incoherence. The formal constraints of Bayesian theory dictate, as we saw in

Section 2.4.5, that multiple probabilistic analyses should agree with one another

and with direct judgment. Similar coherence constraints can be derived for

Shafer's theory from the requirement that uncertainty on S be measured by a

probability. But it is implicit that these analyses are, or should be, based on

the same evidence. There appears to be no corresponding guarantee or prescription

that arguments based on different evidence should arrive at the same or similar

conclusions. Dempster's rule is designed explicitly to combine arguments based on

independent evidence; hence, there are no direct constraints on the extent to

which those arguments must agree (except that there be at least one pair of mean-

ings from the two arguments whose intersection is non-empty).

'evertheless, we propose that the resolution of conflict in a belief function

analysis be construed as a desire for coherence. The missing element, which is

responsible for the incoherence, is a judgment, often implicit, regarding the

* overall structure which the final belief representation is expected to have. Such

judgments are based on one's knowledge about reasoning in a particular problem

domain. "Conflicting evidence" is evidence whose combination produces a structure

that violates such a prior expectation. Thus, the definition of "conflict" will

vary from one problem domain to another. The locus of conflict is not, strictly

speaking, between the two sources of evidence, but between both of them, on one

* side, and a structural expectation regarding the outcome of the argument. on the

other. Ihen a conflict of this sort occurs, in an iterative, constructive

context, the decision maker has a choice of either revising the expectation or

else making one or more of the three kinds of changes we discussed above (revising

[
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discount rates, frames, or steps in an argument). j
If belief functions are probabilistic with discounting (i.e., assign support only

to single hypotheses and to the universal set), then it is often plausible to

require that hypotheses which receive very little support from either of two argu-

• :ments not receive predominant support in the combined analysis. This was the

basis of the adjustment of discount rates in the above example (and also seems to

underlie the use of discounting in Shafer, 1982). Note that an analogous require-

ment is recommended for Bayesian analysis by deGroot (1982).

*' Other possible structural expectations regarding the form of a belief function

" model include that it be consonant or hierarchical. In these cases, support is

assigned only to nested subsets of hypotheses or to subsets that form a tree,

respectively. Neither of these properties is necessarily preserved through com-

bination by Dempster's rule. Yet, as we noted in Section 2.5.3 above, such struc-

tural constraints may (a) be quite plausible for particular problem domains (cf.,

Gordon and Shortliffe, 1984, on medical diagnosis), and (b) be required to reduce

the computational tractability of a Dempster-Shafer model. Thus, once again, a

* higher-order process of qualitative reasoning may be necessary to explore revi-

sions in beliefs and assumptions, in order to handle "conflict" and to ensure the

applicability and plausibility of a Dempster-Shafer calculus (see Section 3.0

below).

An important by-product of requiring consonance should be noted. One potential

criticism of Shafer's theory is that it lacks a concept of the acceptance of a

* hypothesis once it achieves a sufficient degree of evidential support (e.g., Levi,

1983; L.J. Cohen, 1977). A precondition of acceptance--and what makes it a useful

concept in some contexts--is that it should yield a logically consistent and com-

plete story. Neither is true if a threshold or cutoff for acceptance is defined

on Bel(*) in Shafer's system. Both a hypothesis and its complement could have

7ositive support, and thus conceivably both could be accepted, vielding a

contradiction. Moreover, two propositions, p and q, might be accepted but their

conjunction, p&q, rejected. Both of these problems disappear in a consonant

belief function: Since a hypothesis and its complement are not nested, they can
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not both receive support: and it can be shown that Bel(p&q) = MIN(Bel(p),Bel(q))

* . a.. tnus that a conjunction is at least as credible as either of its conjuncts.

In all these cases, there is a tension between the desirability or plausibility of

depicting the state of evidence "as it is," conflicts and all, and attempting to

produce a resolution or reconciliation within the framework of some plausible or

desirable global requirement. We claim that this tension is at the heart of any

truly intelligent and flexible reasoning with probabilistic systems.

2.5.13 Summary. Shafer's theory provides a natural representation of quality of

evidence and relaxes the assessment requirement to the extent that the evidence is

incomplete. Like Bayesian theory, however, belief function models impose inor-

dinate input and computational demands unless specialized models are adopted. The

validity of Shaferian theory has not been clearly established, although it may be

illuminated by a partial Bayesian derivation. A major difference is that Shafer's

theory does not permit reassessment of the quality of an information source in

terms of what that source says; the credibility of one witness cannot be increased

by corroboration of a second witness or decreased by contradiction. In belief

function theory, the outcome of combining the information from two conflicting

data sources can vary dramatically, depending on our assessment of their

credibility. Yet we cannot use the two sources to crosscheck one another. We

argue that this gap in Shafer's theory requires that it be supplemented by a

process of qualitative reasoning that reexamines sources of evidence as an

anal:sis proceeds, and recalibrates them in the light of corroboration or

conflict. The same process might supplement Shafer's theory in other ways: by

reframing evidence and hypotheses to establish independence of evidential

*O arguments, and by revising inferential steps which are internal to such arguments.

2.6 Fuzzy Set Theory

* 2.6.1 Nature of the theory. Since L.A. Zadeh advanced fuzzy set theory in 1965,

an enormous amount of interest, and a very large literature, has been generated.

Most of this interest has been theoretical, concerned with the mathematical im-

plications of the theory, but there have been a number of attempts to apply the
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theory to practical problems. This is in line with Zadeh's original reason for

int.roducing the concept. He argued that much systems analysis was inadequate be-

cause its requirements were too precise. He felt that our intuitive understanding

of concepts and, more interestingly, our reasoning about those concepts, were

typically imprecise, yet analysis (especially with computers) required

precisification. To resolve this paradox, he introduced the now well-known concept .

of the fuzzy set--a set with imprecise boundaries. The essential element is the

membership function IA(X) which represents the degree to which an element x

belongs to some set A. If -A(X) 1 1 then x indisputably belongs to A, while if

.A(X) - 0, x does not belong to A. An intermediate value, such as iA(X) - 0.6,

indicates that x belongs to the set to some degree. Fuzzy sets are thus a precise

tool for representing and manipulating imprecise notions.

Application of fuzzy set theory involves: first, the representation of imprecise

* concept by fuzzy sets; second, the use of a calculus to construct other fuzzy sets

representing the output variables in an analysis; and third, reinterpretation of

the results in imprecise language (see L.A. Zadeh, 1975). The first and last

steps are crucial if the flavor of the fuzzy theory is to be fully captured. The

core idea is to construct a calculus for the formal (i.e.,precise) manipulation of

imprecise concepts, which takes in imprecise inputs and puts out imprecise outputs.

* 2.6.2 Applications of fuzzy set theory to inference. The theory of fuzzy sets

can be applied in many ways, in the sense that wherever a mathematical relation-

ship exists, it can be fuzzified. Thus, there are many possibilities for using

the fuzzy calculus in conjunction with other inference theories. Alternatively,

it can be applied directly to ordinary imprecise reasoning (by experts or non-

experts) in natural language. We will introduce some of the formalism of fuzzy

set theory by examples of these two types.

2.6.3 Fuzzy implication. Suppose a rule for an image interpreter could be

",ritten:

"If the texture is rough, and the illumination is good, then the object is
a forest."
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To express this rule using fuzzy set theory, we need to define the input fuzzy

sets. The first will be 1R(t), which measures the extent to which a particular

texture-vector t can be said to belong to the set of 'rough' texture vectors. The

second will be 1G(i), the extent to which an illumination level, i, can be said to

be 'good.' The third will be F(X) describing the 'forest'-ness of the object: x

is some variable which gives a precise categorization of each object and F(X)

,.ill be a fuzzy-set on the variable x.

The first manipulation will be to representV RG(t,i), the extent to which an image

with texture-vector t and illumination level i can be said to be both "rough" and

"good." Zadeh's calculus suggests that this is the minimum of the two membership

functions:

0RG(t,i) - min(,R(t),1G

Implication in fuzzy set theory is defined as a relation. Thus, "if U is F, then

is G," where F and G are fuzzy sets on the variables u and v underlying U and V,

s described by the relation

iV/U(uv) = min(l,'12 (v) + 1- (u)

: nt an obvious notation. This may be interpreted as the extent to which a par-

0JI -icu.ar value of U implies a particular value of V.

-e next step is to combine the rule with a statement about the fact described in

:ts antecedent. In fuzzy implication, not only may 3 the concepts involved be

fuzz%-, but the match between a fact and the antecedent of a rule may be a matter

degree as well. Thus, we may have a rule stating "If U is F then V is G," but

Sinput stating that "U is F*". wjere F amd F* are not the same. Zadeh defines

tnis as

y(v) - max(min( F*(U) V/U(u,V')).
U

Ou
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.-. where Y is the fuzzy set that results from combining F* and V/U. Thus, in our

example, supposei i'(t,i) is a fuzzy set on the variables for texture and

illumination, t and i. /'(t,i) may reflect an input to the effect that the region

is "very rough" and the illumination is "not very good." We find that

u Uy(x) = max(min(u'(t,i),min(l,l-min(/,(t),;G(i))+ (x))))

-. is the induced fuzzy set on the categorization variable, x. viy(X) is a quantita-

tive measure of the possibility that the object is a forest given the fuzzy

evidence regarding roughness and illumination and the fuzzy implication rule. The

output may now be translated into an imprecise natural language expression (e.g.,
"very possibly a forest") corresponding to py(x).

*

2.6.4 Fuzzy probabilities. Uncertainty about facts (i.e., chance) was not men-

tioned above; we just talked about imprecision. Zadeh stresses that the two con-

cepts are distinct, and that fuzz set theory should only be used to describe

imprecision. If we are impreciseour uncertainties, however, then a role exists

for describing that imprecision with fuzzy sets. Watson et al. (1979) and Zadeh

(1981) discuss this idea in the context of decision analysis, but it can clearly

be applied to any use of Bayesian probability theory, or belief function theory.

:he basic tool for fuzzifying a calculus is Zadeh's extension principle, which

* enables us to compute the fuzzy set membership function for a variable when it is

" a function of variables whose fuzzy set membership functions are known. Let

- v = F(XI,X 2,. .. Xn" Then 1 y(y) = max(min(,iX (xl), ;x 2(x2 ) ...... Oxr(x)) where

. is the extent to which a value y belongs to the set of possible numbers for

the output variable.

Su7pose a scene labeling procedure leads to a probability p that an object should

be classified as a building. Imagine we have a loss function which gives unit

loss if misclassification occurs, and zero loss if not. Then the expected loss

from classifying the object as a building is
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1 x (l-p) + 0 x p - 1-p

while the expected loss from classifying the object as 'not a building' is

1 x p + 0 x (l-p) - p.

Clearly, we minimize expected loss by categorizing it as a building if p>l/2. Now

suppose that we are imprecise about p to the extent that we can only describe a

fuzz-,- set W (p) about possible values of p. Fuzzy sets for the expected loss in

the two cases (actually p(l-p) and i(p)) can be produced using Zadeh's extension

principle. But what conclusions can we draw? Freeling (1980) discusses this in

some detail, suggesting several alternatives approaches. As we might expect, when

results are fuzzy, the analyzis may not indicate any particular decision regarding

* classification.

As with the Bayesian analysis, there are some non-trivial problems in attempting

to apply fuzzy set theory to inference in expert systems.

2.6.5 Feasibility. We criticized both Bayesian theory and belief function theory

- .on the grounds that the analysis involved in practical problems can be quite

complex. This will also be true of fuzzy set theory. The fact that functions of

variables have to be handled in computations makes the analysis difficult to

handle numerically. Nonetheless, there are indications that the max-min opera-

* .. tions are numerically easier than the sum-product operations of the other

.-- theories. It would be wrong, however, to assert that the use of fuzzy set theory

,O removes all of the difficulties caused by complexity in the other two theories ex-

amined here.

2.6.' Validity. For a theory which has had an enormous literature, there is

• stil a considerable discussion amongst scholars on the justification and inter-

pretation of the theory.

2.6.- Semantics: Where do the numbers come from? This question is raised by
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most people when they first study fuzzy set theory. There are no standard proce-

dures to be applied in every case; anything plausible would seem to do. In

particular, there are neither behavioral specifications nor canonical examples of

the kind Shafer claims to be important. Zadeh would argue that a theory of im-

precision should not need precise inputs, so that we should not bother too much

over the exact nature of the imput membership functions. If that is the case,

then answers should not be very sensitive to input membership functions.

In many applications, this is not the case, and indeed, sometimes answers are sen-

sitive to just one point on a membership function.

What is the meaning of the output? Paralleling the uncertainty relationship be-

tween human perceptions of imprecision and the calculus of fuzzy sets is the

reverse relationship: once we have computed an output fuzzy set, what do we do

with it? We briefly discussed the possibility of linguistic interpretation above.

This does not appear to have been a satisfactorily implemented approach, although

in part because people differ in the conclusions they draw from the same natural

language statement.

In the light of these difficulties, it is not surprising that efforts should be

made to assimilate fuzzy sets to some other framework of uncertainty, such as the

Bayesian or Shaferian. It is difficult to do this in a natural way, however, due

to the difference between imprecision and uncertainty about facts. For example,

suppose Analyst A refers to an object x as "long", after having measured x

exactly. There is no doubt as to x's actual length and although A may regard x as

long only to a certain degree, he is not uncertain whether or not x is long. What

fact then could A be uncertain of? We add three caveats: (i) if A tells a second

Analyst B that x is long, then B may be uncertain regarding x's actual length;

(ii) if A had only glanced at x, rather than measuring it, he might be uncertain

(as well as imprecise) about x's actual length; (iii) we may in fact be uncertain

as to whether a random English speaker would call the object "long".

Nevertheless, the most natural approach is to treat this kind of uncertainty as

the degree to which x (or an object of x's length) is long, rather than the chance

- that x is long. Put another way, these degrees are part of the meaning

(denotation) of "long", and not (necessarily) a result of uncertainty about what
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"long" means or about the actual length of an object.

Nonetheless, it may be worthwhile exploring ways to represent imprecision in terms

of other frameworks. For example, a consonant Shaferian support function (Section

2.5.3 above) obeys a calculus that closely approximates Zadeh's possibility

theory. Consonant support functions seem appropriate for representing imprecision

in the implications of evidence (it points to a set of nested regions where the

truth could lie). And they have the advantage of a somewhat more secure normative

foundation (Sections 2.5.5 - 2.5.11 above). Thus, the possibility of translating

between natural language expressions and support functions might be worth

exploring, despite some cost in naturalness.

2.6.8 Inference: What are the appropriate connectives? In terms of either

axiomatic justification or face validity, the procedures Zadeh recommends for com-

• bining his membership functions are not unique. For example, Zadeh argues that

the degree to which an element belongs to a set A1 and another set A2 should be

computed by

A9AA2 (x) - min(WA,(X),A2(X)).

This is clearly consistent with the requirement that if both sets are crisp (i.e.,

• -only takes the values 0 or 1), set membership should obey the usual rules (i.e., x

,,AIAA2 if and only if xcA I and x A2 ). Note however, that this is not the only con-

nective rule with this property. For example, the family of connectives

1i" - a 1- c

_ min(.A (x)oA (x), VA (x) 1A (x)), 0<<l.
1 2 2 1

all have this property, where 1- is a power to which the membership function is

raised. Zadeh chooses a= 1; the choice of o- 0 gives the Bayesian rule for the

probability of a conjunction (namely A,(x). WA (x)). There are many other pos-
2

sible definitions (see Dubois and Prade, 1984).

* 2-60

- . *. .-



Similarly, disjunction, negation and implication all have alternative

representations, and the choice of the forms usually employed is arguable. So far

as we are aware, very little research has been carried out on the implications of

using different connectives on the results of a fuzzy analysis. There is,

therefore, some arbitrariness in the connectives chosen by Zadeh--an arbitrariness

which pervades the theory.

2.6.9 Plausibility of instances: The main strength of Zadeh's theory is in its

ability to produce instances of reasoning that are acceptable on a case by case

basis. In this regard, it has a richness and scope that no other theory even at-

tempts to capture. In particular, it is the only theory that attempts to formal-

ize the combination of considerations based on similarity (e.g., the closeness of

F* to F in the above example) with more traditional considerations in inference

(e.g., traditional logic or probability). In this largely uncharted domain, the

(present) absence of deep normative foundations may be no disgrace.

Nonetheless, there may be cases where fuzzy logic gives implausible (or non-

useful) answers. Fuzziness is concerned with what is possible, rather than what

is probable. Zadeh sees a possibility distribution as being an upper bound on a

probability distribution. Articulating the possible may be important, but if many

options are possible, it does not help in our search for what is probable. In

practice, this point is expressed by the tendency for fuzzy sets to produce rather

bland answers, giving high values of the membership function for large sets of

variables. One can see some applications when this is not an obstacle to

understanding, if some important options are seen to have very low or zero

possibility. In general, it does present a difficulty.

2.6.10 Summary. Fuzzy logic is a highly flexible and versatile tool for handling

imprecision. It may be applied directly to reasoning with verbal expressions or,

at a higher level, to reasoning with a numerical calculus like probability theory.

Unfortunately, the meaning of fuzzy measures is not always clear; and the rules

for manipulating them seem to lack any deeper justification than the plausibility

of the answer in a specific application.

-6

2-61

,' - ' -" . ",'" • . - " .' - _ . i- , i. i. - . .- i - ' . "' ". • -- . , , , . - . , . . , , . , . . . . : . . . . . . , . , . . , i i i . .



2.7 Non-Monotonic Reasoning

In this section we turn to a quite different approach to reasoning under condi-

tions of uncertainty. Although non-monotonic reasoning emerges directly from the

tradition of non-numerical reasoning in artificial intelligence, it is designed to

address problems of incomplete information. The basic ideas of non-monotonic

reasoning were first applied by Stallman and Sussman (1977) in a system for

electronic circuit analysis. Since then, theoretical work has been associated

with Doyle (1979), McDermott and Doyle (1980), Reiter (1980), McCarthy (1980), and

others.

2.7.1 Nature of the theory. Traditional, axiomatic formal systems are monotonic,

in the following sense: beginning with an initial set of premises, the number of

provable statements or theorems of the system increases monotonically in time as

new axioms or premises are added on.

In contrast, the content of practical structures of argument and belief may

diminish as well as increase. New data may compel an analyst to challenge and

reject previously derived conclusions. Such systems are non-monotonic in time.

Humans become skilled at merging conflicting data into existing arguments or

beliefs so as to regain consistency while minimally disrupting the established

systems. Non-monotonic logic is the name associated with a set of formal and

computer-based systems designed to incorporate new, conflicting data into systems

of belief based on incomplete information.

2.7.2 Dependency-directed backtracking is a key concept in implementing non-

monotonic systems. As data and constraints are added to a non-monotonic system,

they are treated as valid until a contradiction is found. Traditional systems, in

the face of a contradiction, must backtrack past the data that was added im-

mediately prior to the contradiction, searching for a new path that is

contradiction-free. Many dead-ends are likely to be encountered in an exhaustive

search of this type before a consistent total set of beliefs is found. In a non-

monotonic system, only those beliefs which actually contributed to the contradic-

tion need to be considered.
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Dependencies among statements in a non-monotonic system (Doyle, 1979) are repre-

sented (primarily) by data structures called support lists. A support list jus-

tification for a statement has the form

. Statement statement (SL <inlist> <outlist>).

Such a justification is a valid reason for belief in the statement if every state-

ment in its inlist is believed, and every statement in its outlist is not

believed. For present purposes, we can distinguish three kinds of justification

in these terms:

(1) A premise justification has an empty i nlist and an empty outlist; i.e.,

(SLO). Thus, nothing else needs to be demonstrated, or not to be demonstrated,

to ensure acceptance of a statement with such a justification. Observational data

(or unquestioned general principles) might be treated in this way. For example,

N-1 Object has texture of type x (SL()())

is automatically regarded as IN.

(2) A monotonic justification has a non-empty inlist, but an empty outlist. For

example,

N-2 Object is a building (SL(Object has texture of type x) ()

is a monotonic justification. Note that it corresponds to the example discussed

* in Section 2.4: This type of node simply states that if certain other facts are

believed (e.g., texture is type x), then the relevant statement should be

accepted (e.g., the object is a building). N-l's being IN, in conjunction with

this justification for N-2, is sufficient to cause N-2 to be IN.

(3) If only monotonic justifications exist, no statements can be retracted.

Hence, they are appropriate only if all possible evidence is explicitly stated in
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the inlists corresponding to various possible conclusions. In other words, we

must resolve not to accept any statement until we possess all the information

regarding its truth or falsity that we ever intend to regard as relevant. In this

example, N-2 would make sense only if texture was the sole clue relevant to class-

ifying an object as a building. More typically, we cannot afford to be this

conservative. We may wish to accept a statement provisionally, to act "as if" it

were true, and to use it in subsequent reasoning, based on only a subset of the

possible observations. The appropriate means for doing so is via a non-monotonic

justification, i.e., a support list whose outlist is non-empty. Statements with

non-monotonic justifications are called assumptions. The inlist states the condi-

tions (if any) under which it is desirable to assume the truth of the statement;

the outlist states the conditions under which the assumption would have to be

rejected. Thus, to continue the example, a more appropriate version of N-2 might

be:

N-2' Object is a building (SL(Object has texture of type x)
(Object is far from road))

In other words, if we know the texture of the object to be x, we can assume the

object is a building as long as we have not prove that it is far from the road.

Thus, N-l's being IN, in conjunction with this justification for N-2', is still

sufficient to cause (provisional) acceptance of the statement that the object is a

building. The assumption is appropriate even if we have as yet collected no data

at all regarding the object's distance from a road. But suppose we now collect

such data and as a result add the following premise to our system:

N-3 Object is far from road (SL()).

N-3's being IN is now sufficient to cause N-2' to go OUT.

The latter is an extremely simple example of dependency-directed backtracking.

Let us spell out the steps in a bit more detail. N-2' and N-3 being jointly IN

is detected by the system as a contradiction. The system then sets up a CON-

TRADICTION node with N-2' and N-3 in its inlist:
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N-4 CONTRADICTION (SL(N-2' N-3)()).

N-4 states a "local constraint" governing the relationship of N-2' and N-3: they

cannot both be IN. Note, however, that N-4 is IN only so long as N-2' and N-3 are

IN. The system now searches for the set S of assumptions (i.e., statements with

non-empty outlists) which are responsible for the CONTRADICTION node N-4; in other

words, S contains the assumptions whose being IN has caused N-2' and N-3 to be IN.

* The system then sets up a NOGOOD node as a permanently IN record of the inconsis-

tency of S. This node has the form:

Statement # NOGOOD S (CP(CONTRADICTION)(S)())

where CP is a conditional-proof type of justification. Essentially, the NOGOOD

node is justified by the relationship between S and the CONTRADICTION, indepen-

dently of whether the CONTRADICTION happens to be IN or not. In our example,

there is only one assumption responsible for N-4's being IN, and that is N-2'

itself. Thus, we get the following:

N- 5 NOGOOD N-2' (CP(N-4)(N-2')()).

In this case, the CP justification is valid (and N-5 is IN) because N-4 is IN

whenever N-2' is IN.

The next step is crucial in more complex examples. The system selects a "culprit"

C from the members of S, i.e., it identifies some one assumption among those col-

lectively responsible for the problem and decides to deny that assumption. To do

so, it further selects some member 0 of the outlist of the culprit. It then sets

up a support list justification for 0. This justification says, in effect, that

if you want to keep all the other assumptions in S (except C), and if you have not

proven any of the other grounds for retracting C, then you should believe 0. (The

inlist of this justification contains all the assumptions in S, except C, together

with the NOGOOD node; the outlist contains all the members of the outlist of C ex-
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cept 0.) The result is that 0 is (provisionally) treated as IN; C is retracted;

-. and the CONTRADICTION node goes OUT. Of course, 0 is only an assumption; later

contradictions may lead to its retraction and to the use of some other member of

the outlist of C, or else to the restoration of C and the denial of some other as-

sumption in S.

Although in our example this process is trivial, it does illustrate another impor-

tant aspect of the truth maintenance system. In our example, as noted,

dependency-directed backtracking must select N-2' as the "culprit" for denial.

Since N-3 is the only member of its outlist, N-3 receives a new justification. It

now appears as

N-3' Object is far from road (SL()()) (SL(N-5)()).

* It appears that N-3' can be justified either as a premise (data) or an assumption

required to resolve the inconsistency represented by N-5. This, however, is

wrong. The second justification is circular, since it was N-3 that led to the in-

consistency in the first place. Doyle's Truth Maintenance System guards against

circular justifications of this sort, by designating certain justifications as

"well-founded" and others as not.

We now turn to a somewhat more detailed example.

2.7.3 Example of informal non-monotonic reasoning. An image analyst is shown two

"" images taken from a platform directly above the object of interest, a rectangular

structure on the deck of a vessel. The images are taken at different times of

* day. The sun angles and the height of the platform above the vessel are known,

and the analyst is tasked to measure the object and make some inferences about its

structure. The images are shown below:

2
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Obj ect
Image #i ortion of

J Deck

T,.Obj-ec t
Image #2 ........

. Portion of
Deck

A question of particular interest is whether the dark "object" is a hole in the

deck through which the dark interior of the vessel's hold is seen, or a solid

structure on or above the deck.

The analyst might reason quickly as follows:

"The object is uniform in reflectance, therefore, probably planar. It casts a

, shadow, therefore, must be an opaque structure elevated above the deck. From the

distance between the left-hand edge of the shadow and left-hand edge of the

object, I can measure the height of the object above the deck."

"There's a problem with this simple model. The shadow in the second image is much

longer than the object. Therefore, either the object is a planar structure at-

tached to the deck at some angle, or if it a horizontal planar structure it must

be supported by some other structure, invisible to me, that contributes to the

shadow." The analyst might proceed to sketch several configurations that are con-

sistent with the data:
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The analyst has quickly noted and resolved two inconsistencies: First, the exist-

ence of the shadow doesn't jibe with the theory that the dark object is an aper-

ture in the deck, so this hypothesis is ruled out. Second, the size of the shadow

in the second image doesn't fit the theory that the object is a horizontal plane

suspended above the deck; this is ruled out and rephased with the "leaning wall"

and "planar support" hypotheses, as illustrated.

° 2.7.4 Application of a non-monotonic system. We will next illustrate how this

argument would be treated in a non-monotonic reasoning system. We assume that ob-

ject recognition and feature extraction have been performed, either by an analyst

or by a machine, and that these data have been represented in computer-compatible

form. The image-processing system or analyst will have recognized objects and A

shadows and will have measured the distances from object to shadow boundaries. A

set of plausible hypotheses (flat object on surface; aperture in deck; tilted

object) will have been formulated and recorded as statements. The resulting data

set is as follows:
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Statement # Statement State Support List I
IN OUT In Out

1 Object is aperture in X 5,7 2,3,4
deck. 6,8,9

2 Flat object lying flat X 5,7 1,3,4
on deck. 6,8,9

3 Flat, horizontal object X 6,8 1,2,4

supported above deck. 5,7,9

4 Flat object, tilted at X 6,9 1,2,3

angle to deck. 5,7,8

5 At sun angle 61, object X

is uniformly bright, casts
no shadow.

6 At sun angle e1, object X
is uniformly bright, casts
a shadow of dimension less
than object.

7 At sun angle 62, object X
is uniformly bright, casts
no shadow.

8 At sun angle e2, object Y
is uniformly bright, casts
a shadow smaller than object.

9 At sun angle 72, object X

is uniformly bright, casts
a shadow larger than object.

As in our earlier discussion, a statement is IN or OUT at any given time depending

" on whether or not it is justified based on evidence currently available. The jus-

tification for a statement being IN or OUT is based in turn on certain other

statements being IN or OUT. The support of a given statement is the set of state-

ments required to be IN or OUT for that statement to be IN. Thus, the statements

and the justification relationships form a tangled network. The set of IN state-

ments grows and shrinks in a non-monotonic fashion as new evidence changes the

states of particular statements, and as the effects of these changes propagate
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through the network. (The set of justifications, however, grows monotonically.)

For example, the support list of statement 1 is (SL(5,7)(2,3,4,6,8,9)). To see

how the system deals with conflicts between data and observations, let us assume

the analyst starts by assigning IN as the state of statement 1. The observation

data states are:

5,7 OUT (Object does cast a shadow)

6 IN (At sun angle el, object casts a small shadow)

8 OUT
9 IN (At sun angle 62, object casts a large shadow)

The non-monotonic system checks the network for consistency among the states and
support sets, notes an inconsistency, and introduces a new conflict assertion:

Statement # Statement State Support List
IN OUT In Out

10 CONTRADICTION X 1,6,9 5,7

The system proceeds to resolve this conflict by changing statement states; obser-

vation data is challenged only as a last resort. For efficiency, the system may

attempt first to achieve consistency with a subset of the observation data, since

this is potentially a large data base. In our example, the system works initially

with the (5,6) observation data, and subsequently considers the (7,8,9) data.

*Initial consistency is achieved by setting statements 1 and 2 to OUT and statement

3 to IN, retaining statement 4 in the OUT state. Statement 10, CONTRADICTION,

reverts to the OUT state (although the system retains a permanent trace of this

conflict "proof" for subsequent possible activation.)

Since statements 7,8,9 are not being considered at this moment, statement 3 IN is

consistent with the data (5 OUT, 6 IN).

• Next, the system broadens its scope to consider a larger piece of the data base.
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A new CONTRADICTION statement is generated:

11 CONTRADICTION X 3,9 8

To resolve this conflict the system considers new state settings. Resetting

statement 1 to IN is disallowed by the trace of the previous conflict. The cor-

rect solution setting statement 3 to OUT and statement 4 to IN achieves

.-' - consistency.

The scenario sketched above illustrates the truth maintenance feature to be found

in deductive retrieval systems, such as DUCK (McDermott, 1983). Non-monotonic

reascning is very much, however, an active area of AI research, with open ques-

tions remaining both in feasibility and validity.

2.7.5 Feasibility. Dependency directed backtracking is a species of discrete

relaxation (like Walz filtering, as described in Cohen and Feigenbaum, 1982). It

seeks a consistent allocation of truth values across a set of statements, by

utilizing local consistency constraints between pairs of statements, rather than

by exhaustive search through the space of all possibilities. Thus, a high level

of computational efficiency can be achieved.

To make this efficiency possible, however, in non-monotonic systems, the traces of

proofs are retained, even though the premises utilized by the proof, and the

statement that was proved, may (temporarily) be judged invalid or OUT. Therefore,

if the premises become valid or IN at some later time, the work of rediscovering

the proof need not be repeated. The justifications consume space in memory, and

the tradeoff is therefore made between memory storage and the processing overhead

of regenerating proofs on the fly.

* 2.7.6 Face validity. Implementations of non-monotonic reasoning revise beliefs

so as to arrive at a consistent overall system of beliefs in the face of a

contradiction. But they pro-'ide only a very limited capability for deciding among

alternative possible revisions. The selection of an assumption as the "culprit,"

and the selection of a member of its outlist to be assumed as true, are both

.21
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highly arbitrary. Some control information is implicit in the ordering of nodes

in the outlist of statement 5; i.e., if 5 is to be rejected, the system will then

assume the truth of members of numbers in the outlist in the order shown. But (a)

this is insufficient to remove all ambiguities, and (b) it makes control informa-

tion implicit rather than explicit, hence, difficult to evaluate or modify.

2.7.7 Plausibility of instances: Conflicting evidence. An often voiced

criticism of non-monotonic reasoning is that uncertainty calculi (e.g., Bayesian,

Shaferian, or fuzzy) can do the same job better. In the example of Section 2.7.4,

for example, our initial state of belief, before consideration of either image,

could be represented as a belief function assigning some support to statement 1

and some support to (1,2,3,4). The evidence represented by (5 OUT, 6 IN) could be

construed as lending some support to node 3 and some to (3, 4). The second bit of

evidence (7,8 OUT, 9 IN) could be construed as assigning exclusive support to node

4. Combination by Dempster's rule leaves node 4 as the only viable hypothesis.

The belief function analysis appears to be more general, since it accommodates

sources of information which conflict to varying degrees, and provides a measure

of degree of belief in various possible conclusions.

Although we are convinced of the value of numerical representations of

uncertainty, we will argue that this objection misses the mark in two ways. It

overlooks an important role of non-monotonic reasoning (1) in drawing implications

for the validity of one argument or line of reasoning from another, even where

they are independent, and (2) in reasoning about the application of the uncer-

tainty calculus itself.

The basic idea of (1) is the following: Suppose we have two independent lines of

reasoning, A and B, with regard to the same sets of hypotheses. Each line of

reasoning depends on certain data and certain assumptions, as illustrated in

Figure 2-8. In Argument A, the impact of Data 1 and Data 2 depends on the accept-

ance of Assumption 1; for Argument B, the impact of Data 3 and Data 4 depends on

Assumption 2.

Vhat happens when A and B support conflicting hypotheses? In a non-monotonic
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system, the set of assumptions that contributed to the contradiction are iden-

tified and declared inconsistent (as a set). Then a selected member of this set

is rejected, by producing a justification (itself an assumption) for a member of

its outlist. As a result, at least one of the two arguments fails (or has a dif-

ferent conclusion), and consistency is restored.

The key point here is that conflict between A and B causes the system to reach in-

side each of the arguments. Conflict resolution is a process of reasoning about

knowledge: what are the weakest links in each line of reasoning? where would

revision accomplish the most?

It will be worthwhile to illustrate this process by a modification of our example.

Imagine (somewhat fancifully) that we are less sure about reported observations of

large shadows than about small ones, due to possible large-scale non-uniformities

in the reflectance of the deck. Then we make the following changes to the initial

state of belief:

Statement # Statement State Support List
IN OUT In Out

9' At sun angle e2, object X 11,12
is uniformly bright, casts
a shadow larger than object

11 At sun angle 02, object is X
uniformly bright, appears to
cast a shadow larger than
object

12 Surface of deck has uniform X 13
reflectance

13 Surface of deck has non- X No justification
uniform reflectance

We see that 9', unlike 9, is not a premise; it is inferred from 11 and 12--i.e.,

the appearance that the shadow is large (11) plus the assumption, in effect, that

this appearance is not deceiving (12). Statement 12 is a "default assumption"

its acceptance depends only on the absence of evidence to the contrary. At the
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start of reasoning, 12 is declared IN, since statement 13, that the deck has non-

uniform reflectance, has no justification. As a result, all inferences based on

the two images proceed exactly as described above.

Now suppose we receive some new, independent evidence. For example, an intel-

ligence report from Agent Y, who is inside the country which owns the ship, says

that plans were made to place a device Z on the deck at the precise spot in

question--and we know that such a device would appear as a flat horizontal object

supported above the deck. This evidence, if reliable, supports statement 3, and

"' is inconsistent with the other hypotheses. We now add nodes corresponding to this

evidence, and add a new justification for statement 3 to represent its potential

impact:

Statement # Statement State Support List a Support List b
IN OUT In Out In Out

. 3' Flat horizontal 6,8 1,2,4 14 1,2,4
object supported 5,7,9
above deck

14 Device Z is present X 15,16

15 Device Z is reported X
present by Agent Y

16 Agent Y is reliable X 17

FA
17 Agent Y is not X No justification

reliable

We also add 14 to the outlists of statements 1, 2, and 4. A premise, statement

15, describes our new evidence. But, here too, we have explicitly represented an

assumption (16) which is required to make the evidence useful. Since the

reliability of Agent Y (16) is a default assumption, the system infers that device

Z is in fact present as reported (14 IN). (14 IN) leads to (3' IN, 1,2,4 OUT), --

which is a contradiction of our previous conclusion.

Dependency-directed backtracking will resolve the conflict by revising one of the

assumptions that produced it. It may assume that the surface of the deck must,
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after all, have non-uniform reflectance, (12 OUT, 13 IN), hence, 3' is to be

' accepted. Or it may assume that Agent Y must be unreliable, (16 OUT, 17 IN),

hence, 4 is to be accepted. As noted above, a clear inadequacy of the system

described by Doyle (1979) is the lack of some measure of the firmness of an as-

sumption upon which to base this choice. Nonetheless, the important point is that

conflict of evidence leads to inferences regarding the acceptability of beliefs

(12 and 16) which are internal to each of the conflicting arguments.

Consider, on the other hand, how an uncertainty calculus such as Shafer's would

handle this problem. We examined the issue of conflict resolution, in the context

of belief function theory, in some detail in Section 2.5.6. There we found that,

depending on the degree of conflict, and on the existence and degree of discount-

ing for the two arguments, we could have: (a) an indeterminate result (if there

is r) non-empty intersection between possible meanings of the two arguments), (b)

exclusive support for hypotheses in the intersection of meanings (if there is no

discounting), or (c) strong support for each of the two conflicting conclusions).

None of these alternatives examines the sources of the conflict and seeks insights

regarding its causes. Adjustments of discount rates in the light of conflict are

likely, moreover, to be invalid in the absence of some exploration of reasons for

the adjustment.

Of course, a belief function analysis can examine the contents of two arguments.

To do so, however, it must enormously complicate the frame T (see Section 2.5.5).

In other words, the original set of hypotheses (1,2,3,4) must be replaced by a

much larger set which also includes the assumptions: (1,2,3,4) x (12,13) x

(16,17). Then evidential support must be assessed, for each of the two conflict-

ing arguments, on the subsets of this expanded set. The price we pay for this

strategy, however, is enormous: in quantity of inputs and computational

tractability, but also in the naturalness of inputs. It is not likely to be very

clear, for example, what bearing our evidence for or against the reliability of

Agent Y ,7ould have on our beliefs regarding the reflectance of the deck; and

similarly, vice versa. The reason, of course, is that the link is highly indirect .

and is discovered only by means of the conflict in conclusions which the two sets

of beliefs engender. The truth maintenance system represents this connection in a
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. quite natural way.

"onetheless, non-monotonic systems as presently constituted are inadequate in a

number of ways. Problems are chiefly attributable to their exactness, on two

levels. For example, non-monotonic systems provide a way of reasoning with incom-

Splete information, i.e., by adopting assumptions, tracing their consequences, and

revising them if they lead to an inconsistency. But they provide no measure of

* the degree of incompleteness in the support for a belief, and no concept of degree

of conflict. As we have already noted, a measure of this sort seems essential in

selecting among alternative possible revisions.

On a second level, the statements whose truth or falsity is adjudicated are them-

selves exact. However, there is no reason why similar principles of qualitative

reasoning might not be applied to probabilistic or imprecise constraints and data.

The need for such a "meta-reasoning" capability is the chief conclusion of our

comments in earlier discussions of Bayesian and Shaferian calculi. In our view,

non-monotonic logic may have its most convincing application at a higher level, in

controlling the application of an uncertainty calculus itself. Assumptions of

more than one sort--about the quality of uncertainty assessments, about the inde-

- pendence of evidential arguments, and about the validity of steps in an argument--

are inescapable in the application of such a calculus. Most of these assumptions

are not easily represented in the language of the calculus itself. Hence, non-

monotonic reasoning may be the appropriate tool for keeping track of assumptions

and revising them when they lead to anomalous results. As such, it may be the key

to a truly "intelligent" or flexible application of those models. It is to this

possibility that we turn in Section 3.0.

2.7.8 Summary. Non-monotonic logic is a computationally efficient method for

reasoning with incomplete information, i.e., for adopting assumptions and revising

K them in the face of conflicting data. Statements are associated not with numeri-

cal indices of uncertainty, as in the other theories we have examined, but with

reasons. Certain statements (called assumptions) may be accepted in the absense
of positive support, as long as certain other beliefs have not been disproven.

.on-monotonic logic provides a natural method for revising beliefs within indepen-
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dent lines of reasoning when they lead to conflicting conclusions. Unfortunately,

validity is diminished by the arbitrariness of its procedures for selecting among

alternative possible belief revisions. We argue that the most useful application

of non-monotonic reasoning may be as a control process for the application of an -'

uncertainty calculus.
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3.0 THE .,ON-,ONOTO.,IC PROBABILIST: AN APPLICATION CF BELIEF FUNCTIONS,
FUZZY LOGIC, AND NON-MONOTONIC REASONING

3.1 Contrast Between Probabilistic and Qualitative Approaches to Conflict

Resolution

The attempt to introduce non-"ad hoc" probabilistic reasoning into expert systems

has led to a variety of dilemmas. Probabilistic analysis, as practiced by

statisticians, typically requires extensive judgments regarding interdependencies

among hypotheses and data, and regarding the appropriateness of various alterna-

tive models. The application of such models to real problems is typically an

iterative process, in which the plausibility of the results confirms or discon-

firms the validity of judgments and assumptions made in building the model. All

these features seem to conflict with the modularity of knowledge representations

associated with expert systems. In a recent paper, for example, Glenn Shafer

(1984a) has concluded pessimistically

.. that the expert systems we see using probability in the near

* future are not likely to have the flexibility and judgmental capa-
city that we associate with genuine intelligence. Instead, these
systems will continue to leave the work of genuine intelligence

to their designers and users. Their designers will have to de-

sign the forms of probability argument for the particular prob-
lem, and their users will have to supply the probability judgments.

The present work addresses this problem in the context of conflict resolution.

Probabilistic and qualitative approaches to reasoning offer quite different con-

ceptions of what it is for two lines of argument, or two pieces of evidence, to

conflict. From the Bayesian point of view, for example, divergence can be

regarded as stochastic; it is comparable to the chance occurrence of errors, or

"noise," in a process of measurement. Extreme divergence of results is unlikely,

but is in fact expected to occur a small percentage of the time. From the qualita-

tive point of view, however, divergence is a result of faulty knowledge; that is,

conflicting results are taken as evidence that one or more assumptions or forms of

argument that led to the conflict are mistaken.

6 3-1



These two conceptions of conflict lead to quite different rationales for the *
process of combining evidence or lines of reasoning. From the Bayesian point of

view, the process is akin to that in which independent errors in repeated measure-

ments tend to cancel one another out. From the qualitative point of view, the ob-

ject is to improve the overall truth of a system of beliefs--to explicitly iden-

tify potentially erroneous steps in the argument and to change them.

- This contrast with qualitative approaches does not apply merely to Bayesian

theory. In Shafer's probabilistic conception, for example, the divergence of two

*''' arguments is simply attributed to the fact that they are based on different, inde- -

pendent bodies of evidence. The direct of combining evidence is, in essence to

tally support for the alternatives conclusions, not a true "reconciliation".

Shortcomings in both probabilistic and qualitative points of view are, in part,

4 complementary. An objection to both Bayesian and Shaferian systems of

*probability, for example, is that they take no formal account of the iterative

* process--of tentatively adopting a model and a set of assessments, testing its

* implications, and revising--which is essential to the efficient and valid applica-

tion of such theories. Moreover, they provide no coherent criterion for the

- provisional "acceptance" of a conclusion as true. Use of conflict as a stimulus

* for the restructuring of probability models or revision of probabilistic inputs

* - may lead to such a criterion. On the other hand, qualitative systems of

reasoning, such as Doyle and McDermott's non-monotonic logic, do not accommodate

* degrees of belief or degrees of conflict, and suffer from an arbitrariness in the

process of selecting beliefs for revision in the face of a conflict. Numerical

indices of uncertainty may be of use both for communication with users and for

* purposes of control in reasoning.

. 3.2 Functional Outline of a Proposed Ss : The Non-Monotonic Probabilist

These considerations suggest the design of a system that regards conflict as

jointly knowledge-based and stochastic. It would reduce conflict by a process of

non-monotonic reasoning prior to statistical aggregation by probabilistic rules;

* i.e., non-monotonic processes would operate on and modify the assumptions and
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judgments embodied in a rule-based belief function model. At the same time,

however, the non-monotonic processes would be guided by measures of completeness

of support provided by the belief function calculus. Each model--non-monotonic

and probabilistic--thus in a sense embeds the other.

The justification for such a system, and the motivation behind its basic

functions, have been argued in Section 2.0. Our purpose in this subsection is to

pull these threads together in a high-level conceptual outline of a Non-Monontonic

Probabilist (NMP) System. Further details are given in Section 3.3, which dis-

cusses the role of the system in human-computer interaction, and in Section 3.4,

which discusses fuzzy measures required to implement the system's functions. Ap-

pendix A shows how certain features of this system could be applied to illustra-

tive problems of image understanding.

3.2.1 Rule-based belief function module. The core of the probabilistic model is

a set of production rules. The action components of the rules assign Shaferian

support measures to subsets of hypotheses. For example,

R.A If a region has texture of type x,

m(C)

then
S.1: Region is a field .98
S.2: Region is a forest .01
S.3: Region is a building 0
S.4: (S.lS.2,S.3) .01

R.2 If an intelligence agent reports

presence of a building in a region,

then

S.1: Region is a field 0

S.2: Region is a forest .01
S.3: Region is a building .98
S.4: (S.I,S.2,S.3) .01
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.. Current knowledge about the problem domain is maintained in a database, which in-

cludes statements about subsets of hypotheses, such as S.l-S.4 above, together

with their current degrees of belief. When the antecedent of a rule appears in

the database, the rule is triggered, and the support it assigns is combined by

* "Dempster's rule with the existing support for the relevant subsets of hypotheses.

Support is attenuated if the antecedent of a rule is only partially established.

In this model, inference may be either forward-chaining or backward-chaining; an

image understanding system could involve either or both. Note, however, that a

simple forward-chaining model could capture many critical features of both

"bottom-up" and "top-down" reasoning. In bottom-up processing, degrees of belief

for labels of a region are assigned when image data from that region trigger a

rule, such as R.l. above. Shaferian template matching, described in Section

A.3.5., falls under this heading. In top-down processing, on the other hand,

rules regarding the assignment of labels to a region may be triggered by ex-

traneous knowledge, as in R.2. Section A.2.6. describes a different use of ex-

traneous knowledge involving relations among regions. In that example, the class-

ification of certain regions as roads reduces the support for classifying any dis-

tant region as a building.

These examples strongly suggest an iterative, forward-chaining processing strategy

for image understanding. First, belief functions are computed for all regions

* based on (bottom-up) image data and non-relational extraneous knowledge. Then the

belief functions established in this way are used to trigger a second set of rules

involving relational extraneous knowledge.

* Where forward-chaining inference proves inadequate is in the use of the rule-base,

together with partial results, to prioritize the need for new information. This

will be an essential aspect of the non-monotonic processes to be described. We

believe, therefore, that an effective image-understanding system will utilize

back6-ard, as well as forward-chaining inference.

The use of belief functions (rather than, say, Bayesian probabilities) provides

the advantages discussed in Section 2.5 a]%..e. There is a natural representation
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of incompleteness of evidence as the support assigned to the universal set (S.4 in I
' the above example)' this will play a critical role in the control of non-nonotonic

reasoning. And support need not be assigned arbitrarily when appropriate ev.idence

is missing. In image analyses, as in medical diagnosis (Gordon and Shortliffe,

1984), we might expect a hierarchical structure of support for hypotheses: e.g.,

one bit of evidence establishes that a region is a building; a second bit estab-

lishes the kind of building it is; etc. Belief functions are a highly natural

tool for capturing such a structure. As a final note, we remark that specialized

belief function models of this sort may be required to ensure computational

feasibility (Section 2.5.3 above).

3.2.2. Non-monotonic reasoning as an embedding context. In the NMP system, both

rules and statements are assumptions, whose acceptance or use depends on the

failure to disprove certain other beliefs (cf., Section 2.7 above). Those other

beliefs are the reasons for the rule or the statement. Such beliefs include:

(1) Model characteristics (e.g., linearity, normality, consonance, etc.)
used in generating the support measures associated with a rule,

(2) the representativeness of frequency samples or expert experiences used
in generating such support measures,

(3) the independence or non-independence of different items of evidence,

and

IJP (4) the occurrence or non-occurrence of facts or events which could affect
belief in a statement by triggering some rule, but for which there is
(as yet) no direct evidence.

(For discussion of these factors in the belief function context, see Section

3.2.5.10 above.) Beliefs of types (1), (2), and (3) are among the suppositions

required for application of a rule. Beliefs of type (4) are presupposed by the

current assignment of degrees of belief to declarative statements. In addition,

of course, belief in a statement depends on the validitv of the rules applied in

deriv.ing it, hence, indirectly, on suppositions of types (1), (2), and (3).

M1easures of credibility for both rules and statements are mathematically deriv:ed

from the degree of their dependence on suppositions of this type. For example,
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the "discount rate" for a rule's support function (in R.1 above, this is the sup-

". port for the universal set, m({S.l, S.2, S.3)) = m(S.4) = .01) will depend on the

nature of the suppositions in categories (1), (2), and (3). This reflects the

possibility that the evidence summarized in the rule is in fact irrelevant; e.g.,

* .because the set of photos used as a training set was from a different geographical

or cultural area.

l "The credibility of a statement, in turn, will be a joint function of its discount

rate (computed by Dempster's rule from the support functions applied in deriving

" it) and the suppositions of type (4). Thus, if R.1 and R.2 are both triggered

with regard to a particular region, the resulting support function by Dempster's

rule is:

mR.l, R.2

S.1 Region is a field .49
S.2 Region is a forest .015
S.3 Region is a building .49
S.4 (S.2, S.2, S.3) .005

The discount rate, m(S.4), is reduced to .005. However, the credibility of the

support assignments to S.1, S.2, and S.3 also depends on the existence or non-

existence of other rules in the rule base (e.g., the rules concerning distance

from roads) which, if they were to be triggered, would significantly change the

support measures.

A state of conflict exists when a significant degree of belief is assigned by

statements in the data base both to a subset of hypotheses and to its complement.

Conflict triggers a process of dependency-directed backtracking, in which one or

more of the suppositions listed above may be revised: e.g., the structure of a

model may be altered; the presumed relevance of frequency data or probabilistic

• expert assessments to the current problem may be adjusted; the problem may be

reframed so as to merge dependent arguments; or the occurrence of relevant facts

or events upon which beliefs depend may be hypothesized. Adaptive learning in

such a system could, therefore, involve revision of belief not only about the oc-
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currence of external facts or events, but about the validity of inferential proce-

dures in its own rule base.

In our example, mR.I R.2 ( ') appears to present a conflict; thus, the system will

* explore potential revisions in R.1 and in R.2. In doing so, it will try to reject

suppositions upon which R.A and R.2 depend. For example, (a) it may question the

-" relevance of the training set used to derive R.1; (b) it may question the com-

petence or trustworthiness of the agent in R.2; (c) it may try "reframing" the

. problem, e.g., the region may be partitioned into smaller regions or merged with

other neighboring regions. (The latter might occur by adjustment of parameters in

. a low-level segmentation procedure.) Finally, (d) the system might look for

evidence supporting (as yet unconfirmed) events or facts that would significantly

* change the assigned support function (e.g., discovery that the region is distant

from a road would reduce support for S.3).

* 3.2.3 Belief functions as a controlling context for non-monotonic reasoning.

How will the system choose among these alternative tactics for conflict

resolution? More fundamentally, since conflict within a belief function is not

typically an all-or-nothing matter (like logical contradiction), how will the sys-

* tem determine when conflict exists? In the Non-Monotonic Probabilist, the control

of dependency-directed backtracking is determined (a) by a domain-specific defini-

tion of conflict for belief functions, and (b) by the relative standing, in terms

of credibility, of statements, rules, and the beliefs upon which they depend. The

actual mechanisms are implemented using a set of fuzzy measures described below in

Section 3.4.

* Conflict is domain-specific (or even problem-specific) in several senses: (1) The

:vpe of conflict which the system is designed to address can be specified

explicitly, and easily modified. For example, conflict may be regarded as sig-

nificant support for a hypothesis and its complement (as above); but it might also

include, for example, the assignment of strong support to a single hypothesis

based on two support functions neither of which assigns significant support to

that hypothesis. (This case is illustrated in Section 2.5.11) (2) Conflict is a
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matter of degree; and the "significance" of any given degree of conflict is repre-

sented by a single parameter which is easily modified. (3) Conflict resolution is

not simply "triggered" when the significance of conflict exceeds some threshold.

.- Conflict resolution is subject to a graded control process, in which the sig-

nificance or seriousness of the conflict is continually compared with the

credibility of the beliefs contributing to the conflict. Conflict resolution

stops when the seriousness of the conflict drops below the degree of

"revisability" of the relevant suppositions. In effect, then, any diagnosis of

"significant conflict" can be overruled by strong independent plausibility of the

contributing beliefs. The result is a system of beliefs which, in an intuitive

sense, maximizes global plausibility.

The selection of beliefs for revision in the face of conflict is a non-random

process. It is guided by measures which capture the extent to which critical

evidence for a particular belief is at present incomplete or unreliable. Indepen-

. dent confirmation for hypothesized revisions is then sought either from image

data, the store of extraneous knowledge, or the user.

When a conflict occurs, the system locates chains of reasoning that (a) con-

tributed strongly to the conflict and (b) have weak, or relatively unsupported,

starting points. In our example, these are a variety of candidates. R.1 is a

strong contributer to the conflict, since its discount rate is quite low. The

system would search among the reasons f-r R.1-- e.g., a list of purported

*. similarities and dissimilarities between the current image and the training set --

. ,for those which have the least evidential basis. For example, in constructing the

support function of R.1, we may have supposed (without really knowing for sure)

*O that weapons facility construction procedures in the target region resemble those

in our country. If this belief were to be revised, the newly posited dis-

similarity would inflate the discount rate for R.l's support function, and the

conflict with R.2 would be decreased. Alternative chains of reasoning involving

* R.1 and R.2 lead to other possible revisions, e.g., in the reliability of the

agent referred to by R.2, or in the segmentation of the relevant region. The

choice of a revision would depend on a measure that reflects the potential benefit

in terms of conflict reduction, and the potential cost, in terms of evidential
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restraints on possible revisions. Whatever revision is chosen, additional infor-

mation regarding the revision may then be sought: by more extended or more sensi-

tive processing of the image, by a more inclusive search for relevant extraneous

knowledge, or by directly querying the user of the system.

A different sort of example involves the chain of reasoning that goes from the

statement S.3 (that the region is a building) to its reasons. The validity of the

. support function assigned to S.3 (mR.1,R.2(')) presupposes that other potentially

relevant rules have not been triggered. In particular, if the relevant region

* i" were found to be distant from all roads, support for S.3 would decline; yet it may

be that no data has as yet been obtained regarding the presence or absence of

roads in neighboring regions. One avenue for belief revision, then, is to posit

the absence of roads in the vicinity. Through a backwards chaining inference,

this posit could direct further processing of the image in the relevant regions,

in a search for evidence of roads.

As in "standard" non-monotonic reasoning, revisions in belief are retained by the

system until new conflicts involving those beliefs are discovered. At that point,

the revision will be undone--unless additional information has in the meantime

provided an independent basis for its retention.

. 3 The Non-Monotonic Probabilist as an Interactive System

In many applications, an image-understanding system will be required to function

interactively with a human user. The appropriate allocation of effort between the

analyst and the computer can, however, vary drastically as a function of such

variables as time pressure, workload, the importance of the task, and the need for

* "judgment" not incorporated in the automated system.

Under conditions of low time stress and with relatively high-level, unstructured

tasks, the appropriate allocation mode might involve predominant human control of

the problem-solving process. The computer's role (as explored in Cohen et al.,

1982) might be to monitor the user's behavior and to prompt when the user's ac-

tions are likely (in the computer's opinion) to be significantly suboptimal. The
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user would determine the degree of suboptimality that justifies a prompt.

By contrast, under high time stress and workload or in relatively "mechanical",

structured tasks, the appropriate allocation mode might involve a predominant role

for the computer. In this case (explored in Chinnis, Cohen, and Bresnick, 1984)

the computer might monitor its own problem-solving activity and prompt the human

when conditions appear that suggest value in a potential human contribution.

An important feature of the Non-Monotonic Probabilistic system is that it can

provide, if desired, a framework for collaborative problem solving between the

user and the system in either of these two modes.

The system described in Section 3.2 already contains an implicit "executive" func-

tion for human-computer task allocation under conditions of high workload. Con-

* trol may be shared between user and computer in the following ways: (a) Users

- may specify their own definition of the type and degree of conflict among items of

S-evidence that will trigger belief revision. (b) Based on this user-defined

objective, and on an assessment of limitations and conflict in its own knowledge,

the system will direct user attention to areas where his contribution can be most

valuable. Beliefs which are subject to revision are labeled according to whether

* or not users are a potential source of information. When an appropriately labeled

* belief is selected for possible revision by dependency-directed backtracking, the

user will, if he desires, be queried. (c) Users may then adjust support assess-

ments and add and delete support list elements, to reflect their on-the-spot

knowledge.

* The advantages of this framework in a high workload and highly uncertain task en-

vironment are considerable: (i) Users will not be bothered by the need to provide

- inputs when default assumptions are adequate; (ii) when anomalies do occur, the

-" system does take advantage of potential user contributions; (iii) the system

reduces user workload by generating promising options (i.e., potential revisions

which would restore consistency) for consideration by the user; (ix) imprecise

linguistic inputs could be accepted; and (v) ultimate control over the objectives

of the reasoning process, its outcome, and his own degree of participation is left
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-. in the hands of the user.

For high-level tasks, where the human has a predominant role, some fairly

straightforward elaborations of the basic conflict resolution mechanism are

required, The computer could develop hypotheses regarding the user's beliefs and

assumptions and their degree of suboptimality by observing the user's performance

(e.g., manual labeling of image regions) and working the problem itself in

parallel. Discrepancies between user and computer solutions would be treated as

conflicts, triggering a process of (hypothetical) belief revision. The computer

would identify the least disruptive changes in its own beliefs required to make

them consistent with the human's conclusions. The resulting set of beliefs is

attributed, heuristically, to the human. If these beliefs exceed a certain

criterion of implausibility (according to the computer), the user would be

prompted. Moreover, the system would display the assumptions which it has in-

ferred to be involved in the user's solution, and the reasons for their im-

plausibility according to the computer model. The user may then weigh the

computer's arguments against his own. The user himself will control the frequency

with which he receives such advice, by determining the criterion of implausibility

required to trigger a prompt.

3.4 Fuzzy Measures

Fuzzy variables have a variety of potential roles in this system:

. - in the description of facts or events (e.g., "rough" or "smooth"
textures);

a in the assessment of numerical measures of support (e.g., "about
.30"); and

in the system's internal processes of reasoning.

In this section, we focus on the third of these roles, briefly outlining a set of

(tentative) measures corresponding to the concepts described in Section 3.2.

In a certain sense (ag discussed in Section 2.6 above), these measures are ad hoc.
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However, they provide an extremely flexible tool for duplicating, in a continuous

rather than discrete fashion, some of the concepts used in "standard" non-

monotonic reasoning. They enable us to avoid an elaborate calculus, like second-

order probabilities, which would seem gratuitous, and indeed equally id hoc, for

this purpose. They provide a graded process of high-level control through a

reasonably plausible and simple set of definitions.

- 3.4.1 Conflict. A simple measure of degree of conflict in a belief function is

. the following. Let A be a subset of hypotheses andA its complement.

-- If Q - (A,A), then

(1) Pconflict(Q) - 2 min[Bel(A),Bel(A)].

This can be justified in two ways. From the fuzzy logic point-of-view, we might

O regard it as the membership function for the intersection of belief in A and

belief in A, i.e., a contradiction. Multiplication by two normalizes the measure,

so that maximum lconflict(Q)-i is achieved when Bel(A) = Bel(A) - .5. Secondly,

note that is it equivalent to the following expression:

" ) I - Bel(A)'BeI(. )l

1 Be(A)+Be(A) (Bel(A)+Bel(A)) - 2Bel(A)

:en we assume, without loss of generality, that Bel(A) Bel(A). This expression

intuitively captures the notion of conflict in a belief function: the first

bracketed expression is the relative similarity of the degrees of belief in A and

O A; the larger this is, the greater the conflict. The second bracketed expression

is the total committed belief: to the extent that the belief function is

. "discounted" by assigning support to the universal set (A,A), we regard the con-

flict as reduced. In short, the maximu Bel(A) doesn't matter since increasing it

* .:ith Bel( ) constant) has two opposing effects: it increases the difference be-

t.:een Bel(A) and Bel(A), but also increases the total committed belief.

Conflict resolution is prompted, however, by "significant" conflict, and the

3
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.. degree of significance required may be a variable function of the problem domain.

A simple, though somewhat ad hoc, way to accomplish this is to define ]
. signif. conflict

(Q ) - conflict7
(Q )

where', is a power to which conflict(Q) is raised. Increasing,', has the effect

of requiring higher degrees of conflict to achieve "significance".

* 3.4.2 Support lists. Each rule and each statement is associated with a set of

reasons, in the form of a support list. However, in place of a discrete class-

ification (inlist vs. outlist) we substitute a "fuzzy membership function," i.e.,

a continuum from in to out. Moreover, strictly speaking, it is the current sup-

port assignment to a statement, rather than the statement itself, which has

reasons or which serves as a reason. We will devote the support assignment to -.,

-i statement A by underlining, A.

. Location of a statement S on the support list continuum for a second statement or

a rule R depends on only two things: (a) the presence of S on the list of ios-

sible reasons for A or R, and (b) the amount of support for the universal set

(S,S). In particular, where S is a possible reason for A,

Uout.A(S) = m(SS)

(2a)
in.A(S ) = -m(S,S) - BeI(S)+BeI(S) Y

where in and out hereafter refer to the inlist and outlist membership functions

respectively (not to the statement S's being accepted or believed as IN or OUT).

Correspondingly, when a rule R is a possible reason for A,

-out-A(R) mR(AA)

)in-A(R) = I-mR(A,A)

where mR() is the support function assigned by R.
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These measures capture a very simple ir:uition. They place the reasons for A (or

R) in an order corresponding to the reliability or completeness of evidence under-

lying each reason. To the extent that confidence in A or use of R depends upon-AA
reasons with high ,out' they rely on unproven (but not disproven) suppositions.

(We argue that this is inevitable in any. probabilistic analysis.)

Vhat determines the content of the list of possible reasons? For a statement A,

it contains (a) the rules in the system which have a support assignment for A in

the consequent, and (b) the statements which occur in the antecedents of those

rules. The possible reasons for a rule are less well-defined. They may include a

list of potential similarities (or absences of potential dissimilarities) between

the target application of the system and the exemplars upon which it was trained.

They may also include specifications of model assumptions used to generate support

assignments. Finally, they include assertions of independence of the evidence

summarized by the rule from evidence utilized in all other rules of the system.

Equation (2) may be elaborated in two respects. First, it might be desirable

(though a bit ad hoc) to fuzzify the membership of a statement S in the list of

possible reasons, i.e., S may only "resemble" some member of that list S*. In

that case,

(2a') o___t.A(S)- minsup(S1S*),m(SS)]

= minsup(SnS*),l-m(S,S)J

where sup(SlS*) - sup(,,S(u)As*(u)), with referring to min. The latter is a
U

measure of the intersection of two fuzz-,- sets S and S*; the outer min in (2')

reflects the conjunctive requirement for -out.A("

A second elaboration of (2) is perhaps :ore substantive. It involves the observa- .

tions (a) that a statement S can have r. -impact, as a reason, on another statement

A unless there is a rule linking them (p'ith S in the antecedent and a support as-

signment for A in the consequent), and b, that a rule R can have no impact on A

*' without the (at least partial) satisfaction of its antecedent by a statement.

Thus, we must take members of the support list for a statement A to be pairs of
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statements and rules (_SiRi) , rather than statements and rules separately. Ignor-

ing the complications of (2'), we get:

-outA(S,R) - min outA(S) ,outA(R)l

(2") min.m(S,S),mR(A,)..

in.A(S,R) --outA(SR).

3.4.3 Assumptions. A statement or a rule is an assum.ption to the degree that its

acceptance or use depends on what is possible, rather than on what is supported by

evidence. The following is a simple measure of that concept:

(3) Lassmpti(S,R) lout-A(S 'R)t" -(A) - -
assumption -- n .

,here n is the total number of statement-rule pairs in the support list for A.

assumption (A ) is simply the (fuzzy) proportion of A's reasons which are out, i.e.,

• . unsupported by evidence.

3..4. Foundations. One requirement of dependency-directed backtracking is the

ability to find statements or rules which have an impact, as reasons, on a given

statement or rule. A statement-rule pair (S_,R) in fact has an impact on the sup-

port assignment to a statement A to the extent that S or its complement is

believed (thus, triggering the corresponding rule) and to the extent that R as-

signs a non-discounted support function. Other pairs of statements and rules,

however, may have an indirect effect on A by having an impact on S or R. All

these pairs are, to a degree, part of the "foundations" of A. We measure this as

follows:

4-foundationsA(n Rn) <i<n in-Si-i ( i R )  ] .
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where So - A. In effect, the min function says that the chain of impact linking

(Sn,Rn) to A via (Sn-l,Rnl) ...(Sl,R)is only as strong as its weakest link.

To what extent is a statement S by itself (or a rule R by itself) part of the

foundations of A? Here, we get:

(5) 1'foundations-A(n ) 
= sup[lfoundationsA(Sn,R)],

i.e., S n's impact is equal to the impact of the most effective chain to which it

belongs. Similarly,

l foundationsA(R) - sylp[foundationsA(a,R)].

3.4.5 Suppositions. Suppositions are assumptions with an impact. More

precisely, the statements and rules which A requires us to "suppose" are

(a) in the foundations of A, and (b) assumptions in their own right. The degree

to which a statement S (or a rule R) is a supposition of A is given by the

following:

(6) 1supposition-A(S) = min[lfoundationsA(S), lassumption(S) ] .

3.4.6 Dependency-directed backtracking. There are a variety of ways that these

measures, or other similar ones, might be used to direct backtracking and belief

revision. Here we give one, quite tentative, approach. Suppose that Q - (A,A)

has a high degree of conflict. The strategy is simply to select the maximal sup-

position for A as the "culprit" C, and then to "negate" C by revising the maximal

member of C's outlist. More precisely, we select a rule or statement C such that

mV[ supposition.A(C ,)] . supposition-A(C)
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Then we select a statement-rule pair (SR) for revision such that

max outC(S'R' ;ot_(SR)
S', R o

Finally, S or R may be revised, depending on which has the least evidential

support, i.e., max~m(S,S),mR(C,C)I.

3.4.7 Conflict as the control over revision. No revisions in fact take place un-

less the degree of conflict is serious enough to justify them. This involves a

simple comparison between the measure of significance of the conflict and a

measure of the "resistance" to revision for our best available candidate. Thus, if

"signif, conflict (Q ) 2:1'i_n-C (li,R ) ,

S or R may be revised; otherwise, not.

3.5 Conclusion

Ho-. does NMP relate in general to currently existing AI software tools? Tools for

building expert systems now exist which provide for quantitative reasoning about

--certainty (e.g., E'YCIN). Other systems permit qualitative reasoning about and

revision of assumptions (e.g., DUCK).NMP is a superset of these capabilities.

Our description of it has dwelled on its capability of combining aspects of both:

i.e., qualitative reasoning about a quantitative model, and quantitative measures

to guide that reasoning. But note that each extreme can be achieved in NMP itself

as a special case. If no assumptions are associated with rules or statements, we

get a pure system for probabilistic inference (like EMYCIN or PROSPECTOR, with a

Shaferian belief function calculus). On the other hand, if all belief functions

were to allocate full support between some single hypothesis and the universal

set, we get a pure non-monotonic sy:stem (like DUCK).

The problems with these extremes, as we pointed out in Section 3.1, are
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complementary. Pure probabilistic systems never learn anything new about their

Srro)babilistic beliefs and assumptions from the experience of apply'ing tier. Pure

non-Ironotonic systems do learn, but the':, have an arbitrariness and arn all-or-none

7ualitv about the new beliefs they acquire. Our argument, quite simply, is that

both capabilities are needed, and that satisfactory svstems will, in general,

require their combination.

4

0°

• 3-15



4.0 SUMMARY AND PROSPECTS

4.1 The Requirement for a Non-Monotonic Probabilist

" The development of efficient and accurate devices for automated feature extrac-

- tion from photographic images has been hampered by a variety of methodological

obstacles. Utilization of general knowledge--about physics, geometry,

geography, and culture--is critical in the face of noisy, ambiguous, and incom-

plete data. But the relevant expert system technologies are often difficult to

-. integrate with bottom-up procedures that utilize very different modes of repre-

sentation and reasoning. More significantly, both expert system and image

processing technologies have depended on ad hoc devices for inference and for

handling uncertainty, with consequences that are in many cases seriously

suboptimal.

In imagery, and in virtually all problem domains where expert system technology

might be introduced, there is a need for explicit and valid quantitative model-

ing of uncertainty; at the same time, there is a need for a metastructure of

qualitative reasoning in which the assumptions utilized in the probability model

are reassessed and revised in the course of the argument. These are the dual

requirements addressed by the Non-Monotonic Probabilist (NMP) described in Sec-

tion 3.0 above.

NMP will be a general-purpose Al tool, like PROLOG, LOGLISP, OPS5, DUCK, or

* EMYCIN. Currently existing AI system-building tools either neglect uncertainty

• .altogether (PROLOG, LOGLISP, OPS5), utilize assumptions but provide no explicit

probabilistic measures (DUCK), or incorporate ad hoc calculi with no provision

for qualitative reasoning about their application (EMYCIN and related systems).

NMP will be designed to fill this void. It will serve as an expert system

'" building tool, which accommodates uncertainty both at the level of probabilistic

reasoning and at the level of qualitative testing and revising of assumptions.

At the same time, NMP's design can be tailored so that it is optimal for image

understanding applications. NMP could be capable of embedding within powerful

- image processing configurations, to produce systems that perform specialized

image understanding tasks.

4-1
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4.2 Main Results

Sections 2.0 and 3.0 have established the requirement for a system such as NMP

and developed its technical foundations. Here we will simply summarize the main

arguments and describe the basic technical concepts that enter into the NMP

high-level design.

The NMP system (described in section 3.0) blends technology from Shaferian

belief functions, non-monotonic reasoning, and fuzzy logic, as well as more

traditional features of expert system technology. Shaferian belief functions

(Section 2.5) have been chosen as the basic measure of uncertainty, rather than

Bayesian probabilities, for several reasons: they do not require definiteness

of inputs beyond what the evidence suggests; they provide an explicit repre-

* sentation of the quality of an inferential argument; and they permit "modular"

probabilistic analyses based on only subsets of the evidence. Shafer's system

permits a variety of useful specialized models for representing evidence. One

of these special cases is (very nearly) Bayesian probability theory itself;

Shaferian belief functions can represent chance as Bayesian probabilities do,

but permit a simple assessment of the guality or reliability of those probabil-

ities as well.

Unfortunately, Bayesian theory is not exactly captured within Shafer's system;

the latter does not permit recalibration of the reliability of an information

source in the light of what that source says, or in the light of conflict or

corroboration by another source. (Bayesian theory does this only at the cost of

*enormous complexity.) To correct this flaw, we argued that belief functions--as

an inference mechanism within expert systems--should be supplemented by a

process of qualitative reasoning. That process would keep track of assumptions

involved in a belief function model (e.g., concerning the reliability of an in-

* formation source) and revise them when they lead to anomalies (e.g., conflict

with other highly regarded information sources).

The same conclusion was arrived at by consideration of two other features of

• Shafer's system: the requirement that different bodies of evidence be indepen-

dent in order to be combined by Shaferian rules, and the lack of any simple

mechanism for assessing steps of reasoning within an independent inferential "'"

4-2
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argument. Once again, the solution we propose is a process of qualitative

reasoning that tracks assumptions about the independence of two arguments or the
internal structure of a reasoning process, and revises them when they contribute

to anomalous results.

In concrete applications, such as image processing, these are by no means idle

concerns. With noisy and incomplete data, no single form of analysis is free of

error; and each relies on different aspects of the data and/or makes different

analytical assumptions. Conflicting results, therefore, may be obtained from

the application of multiple operators to a pixel array, or from combining ex-

traneous information and expectations with the outcome of a bottom-up analysis.

In these cases, the appropriate course of action is to reexamine the factors un-

derlying our evaluation of reliability for the conflicting sources. in

addition, their assumed independence might be questioned, for example, by revis-

ing the segmentation of the image. Alternatively, new analyses might be in-

itiated to confirm the presence of patterns for which there is as yet no

support, but which could account for the anomaly.

We argue that no application of a probabilistic framework is complete in itself.

Whether Bayesian or Shaferian, assumptions of various types are always lurking

in the background. Conflict among diverse analyses is what forces them into the

open. To the extent that assumptions are explicitly tracked and reevaluated,

conflicL is a prompt for increasing the validity of our beliefs, rather than an

occasion for ignoring part of the data or meaningless statistical compromise.

The Non-Monotonic Probabilist implements these requirements by providing a su-

perstructure of non-monotonic reasoning around the application of a belief func-

tion model. Non-monotonic logic (Section 2.7) is a method of reasoning with in-

complete information, in which assumptions may be adopted and subsequently

* revised when they lead to contradictory results. The traditional approach,

however, has been exact both in the statements to which it applies and in its

own control mechanisms. As a resUt, it fails to capture the important intui-

tive notion that support for hypotheses may be graded; and the selection among

alternative equally consistent belief revisions is highly arbitrary. The NMP

system advances beyond this, by applying non-monotonic logic to the application

of an uncertainty calculus, and by utilizing measures derived from that calculus

to direct the process of belief revision itself.
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In the specification of measures suitable for the control of non-monotonic

reasoning in NMP, fuzzy logic has been a valuable tool. It provides a precise

calculus for vague or imprecise concepts (Section 2.6). It thus makes possible

the redefinition, in continuous form, of concepts which occur discretely in

traditional non-monotonic systems. In NKP, for example, "conflict" is a matter

of degree, and so is the status of a statement or rule as an "assumption". As a

result, NMP incorporates a graded control process for belief revision, in which

assumptions are subject to retraction only so long as their resistence to revi-

sion is outweighed by the strength of the conflict.

An important additional feature of NMP is that it can provide a framework for

collaborative problem solving between a user and the system. In a high volume

image interpretation task, users will be free for other tasks as long as

automatic processing based on default assumptions is adequate. But when

anomalies appear, the user's potential contribution may be solicited. The user

himself will control the degree of conflict that triggers a system prompt.

4.3 Next Ste~s

As noted above, NMP can be implemented as a general-purpose tool for construct-

ing expert systems, and in addition, ,may be embedded within an image-

processing environment. That environment might contain a currently existing

system that performs pixel-level operaticns such as filtering and smoothing, and

which provides a preliminary segmentation and labeling of the image. NKP would

serve as a higher-level tool for combining bottom-up results with general

knowledge and intelligence information, and for resolving conflict. It would

influence the operations of the lower-level processor by directing the resegmen-

tation of the image, the recalibration of knowledge sources, and/or the im-

plementation of a more sensitive search for specified patterns. And it would

solicit the inputs of a human analyst when the degree and nature of the

conflict, as specified by the user himself, call for it.

A variety of technical issues need to be addressed in the course of implementing

NMP:
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0 Refinement and verification of fuzzy measures and algorithms for

control of non-monotonic reasoning.

0 Final design of basic system architecture: e.g., the mix of forward-
chaining and backward chaining inference, control over sequences of
iterative processing, and Tossible use of a blackboard to represent
multiple levels of analysis.

* Specification of rules for combining dependent items of evidence
within an independent inferential argument, based on Bayesian and/or
fuzzy logic principles.

0 Development of input routines permitting fuzzy specification of lin-
guistic and numerical facts (e.g., "rough texture," "about 30%
probability"). These may include fuzzy descriptions of interdepen-
dencies among items of evidence and hypotheses (e.g., "A strongly
corroborates B"), and of degrees of permissible conflict among lines
of reasoning.

* Design of outputs, consisting of displays of labels for image
regions, together with uncertainty measures and explanations where
appropriate.

Successful accomplishment of these goals would yield a product of potential

importance to organizations involved in image analysis and image understanding

both in the Army and inside and outside of government. More generally, it would

advance the state-of-the-art of expert system inferencing and provide a new,

highly effective tool to support expert system technology.
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APPENDIX A

A.0 APPLICATION OF ALTERNATIVE INFERENCE THEORIES

TO PROBLEMS OF IMAGE UNDERSTANDING

,* A.1 Introduction

In this section we show how different inference theories may be applied to repre-

sentative problems in image understanding. Our goal is both to extend the evalua-

tion process of Section 2.0 through concrete examples, and to suggest some new

ways that some standard problems may be attacked. We start, in Section A.2 with a

discussion of how prior context information can be combined with data derived from

the pixels. We show how a Bayesian approach, a fuzzy approach, and a Shaferian

approach differ in their handling of the same problem. The same kind of arguments

are used in Section A.3, where we discuss template matching, and in Section A.4,

on relaxation and scene labeling.

A.2 Extraneous Information

A.2.1 Introduction--The problem context. In this section, we shall show how dif-

ferent theories of belief may be applied to a specific example. The problem we

have chosen, as suggested by ETL, is in the area of feature extraction from aerial

photographs. This is a very complex problem area, as is evidenced by the enormous

literature on the subject (see e.g., Rosenfeld, 1983), or the large effort devoted

to this, and closely related topics, by DARPA over the last twenty years. In

spite of this effort, there appear to have been few attempts to construct an ex-

pert system (in the strict AI sense) to effect automatic feature identification

from aerial photographs, let alone to use alternative inference schemes within

such an expert system. One such system we have discovered in the literature

(NEWSIP: Cambier et al., 1983) uses the inference scheme adopted by the PROSPEC-

TOR expert system (Duda et al., 1977), which employs a mixture of ideas from prob-

ability theory and fuzzy set theory. NEWSIP is not designed, however, to deal

specifically with the problem of forming a consensus of the evidence contained in

A-1

,.......- ..... . .... .....-..... ...........-. , . ... ....



*the image with exogenous information about the geographical area being

photographed.

A.2.2 The example. In order to illustrate both how inferences may be drawn from

several different sources of information within an expert system and how different

theories of belief modification may be used in doing so, we have constructed the

. following inference task.

Task: An aerial photograph is available of a known area of countryside. It
is known that a single road crosses the area, and that hither to there has
been no evidence of any building in the area. The task is to determine if a
building has been erected anywhere.

0- The normal way to handle this problem is to use edge and corner detectors, or tex-

ture measures, to segment the image into areas which are then classified into one

of several possible categories. Any region classified in this way as a 'building'

should be tentatively identified as such. There are now many sophisticated algo-

rithms available to carry out this process automatically (see, for example,

Crombie et al., 1982).

These methods do not, however, provide an explicit framework for combining infor-

mation derived from the photograph with information from other sources. We shall

suppose that we also have available the following information:

0 In the area represented by the photograph, buildings are usually
erected near roads.

0 Buildings are not generally erected on boggy ground.

* Some information exists on how boggy the ground is for each point on
the photograph.

Our task now is to construct part of an expert system, which will combine this in-
formation with that produced by the photograph to determine if a building exists
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at any point. In the next four sections we describe in detail how that might be

achieved, using four different inference theories.

A.2.3 Deterministic inference. We shall assume that we have available a state-

of-the-art segmentation algorithm which provides, for any pixel in the image, a

set of classification probabilities, (pi) . For each possible classification

category, i, pi is the probability that the pixel is indeed correctly classified

as belonging to category i (or, more precisely, that the area of land correspond-

ing to the pixel in question belongs to category i). What is of most interest to

us is PB' the probability that the true categorization should be 'building.'

(Note, at this stage, that we shall assume that the segmentation algorithm in-

volves appropriate relaxation procedures which relate the classification probabil-

ities at a pixel to those at neighboring pixels.)

. As with the other inference schemes that we shall discuss below, there are several

possible ways to carry out a deterministic inference.* The following seems a

reasonable scheme, however.

We must first convert the somewhat inexact information presented above into

precise statements. Somehow, the information on bogginess must be converted into

an assessment of whether a particular location can, or cannot, support a building.

No degrees of partial truth will be allowed here. The truth value of:

A1 : the ground cannot support a building

will be either 0, false, or 1, true, for each pixel.

*We mean, by the title 'deterministic inference,' a scheme which not only gives an
unambiguous answer to the question whether a building does or does not exist at a
point, but also one which uses the clearcut implications of standard logic.
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Similarly, the distance from the road at which a building becomes impossible must

be determined, so that a truth value of 0 or 1 can be associated, for each pixel,

with:

A,: the point is too distant from the road for a building to be present.

The inference engine will now consist of the following rule:

" -2 IF ((A1 is not true) and (A2 is not true) and (PB>1 /2))
THEN (a building is present)

ELSE (a building is not present).

Writing H for the hypothesis 'a building is present,' this can be computed as

* 0(H) - min(l-e((Al), 1-6(A 2 ), 
0 (PB>1 / 2 ))

where (H) is the truth value of the hypothesis H and e(PB>l/2 )-1 if and only if

p >l/ 2 . In this framework 6(not H) - 1-e(H). This completes the construction of

a procedure which will give an unambiguous answer on whether H is true or not.

*-'. A.2.4 Probabilistic inference. An obvious drawback to the deterministic in-

" ference scheme above is that it forces a somewhat arbitrary classification for

locations in terms of their distance from the road, and their bogginess. It is

* more natural to think of distance and bogginess as being factors which might make

a categorization of a pixel as 'building' more or less likely, rather than simply

ruling some places out of consideration. A framework for doing this is provided

* by Bayesian updating.

The probability of-H, in the light not only of the pixel data which led to PB' but

also the distance from the road, d, and bogginess of the ground, b, may be

, written, using Bayes' theorem, as
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p(HIb,d,D) = f(bdIHD) PB

f2 (b,dID)

where D is all the relevant data provided by the photograph, f1 is the probability

density on b and d given D and the knowledge that H holds, and f2 is the same den- --

* sity marginalized over (H, not-H). A similar relation holds for H, the hypothesis

that a building is not present. On dividing one relation by the other, we get

"" that the posterior odds on H,

p(Hlb,d,D) fl(b,dIH,D)
O(Hlb,d,D) - ."__B

p(Hlb,d, D) fl(b,dIH,D)

PB

where 0 B = - ,
• l-PB

the prior odds on a building being present based on the pixel data alone. Now

knowledge of the pixel data D will not change our opinion of how likely any par-

ticular values of b and d are, once we know whether H holds or not. For example,

if we were told that a building was present at a particular location, and asked

our opinions or. what b or d might be, then the availability of pixel information

should no- change that view, since it could only do so by affecting opinions about

whether H held or not, about which no doubt existed. It follows that fl should

not depend on D.

We thus obtain the formula

O(Hlb,d,D) L(b,d;H)'OB (A.1)

where L is the likelihood ratio for (b,d) in relation to the hvothesis H.
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In the event that our views about b and d are independent, in the probabilistic

sense, then we can write fl(b,dl') as the product of two densities gl(bl') and

g2 (dl), thus deriving

L(b,d;H) - LI(b;H)'L 2 (d;H)

gl(bIH) g2(dfH)where LI(b;H )  and L 2 (d;H)gl(bjH) g2 (dJH)

The imprecise statement that 'Buildings are not generally erected on boggy ground'

can now be represented in the likelihood ratio LI. If bogginess b is measured on

a (0,1) scale with 0 meaning 'not boggy at all,' and 1 measuring 'very boggy,'

then the density g, will be of the form

91 g(H) 1g(bJl)

0 1 0 -b

The exact form would be determined by elicitation from experts. These curves are

reflecting the fact that if a building is present, low bagginess is much more

likely than high; whereas if a building is not present, the chance of any par-

ticular level of bogginess will just equal the general distribution of bogginess

on land of the type analyzed (this distribution need not be flat as in our - I

example). Similar curves for the distance measures would be elicited.

O :he result of this analysis will be to modify the initial classification probabil-

ity PB' according to formula A.1 above. The method of doing it, by multiplying

the odds on H by the likelihood ratio L, captures extraneous information about the

image under discussion. The effect will be to increase the odds on H for sites
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with low bogginess and near the road, and to decrease the odds else':nere.

This probabilistic analysis ends, therefore, with a revised probability that the

pixel and its surrounding area should be classified as 'building.' If a defini-

tive answer is required at this stage, a classification could be adopted based on

the deduced probability and on the relative costs of classifying a non-building as

"building" or a building as "non-building".

A.2.5 Fuzzy inference. Since its inception in 1965, the calculus of fuzzy sets

- has been used in many different ways to represent imprecision. Zadeh (1983) has

provided a good argument for a particular way in which the calculus could be used

in the management of uncertainty in expert systems, and we follow his approach

here. Zadeh sees a 'serious shortcoming of [existing expert systems in] that they

are not capable of coming to grips with the pervasive fuzziness of information in

the knowledge base, and, as a result, are mostly ad hoc in nature.' Zadeh's

stress on the imprecision of the knowledge base (rather than its uncertainty) is

certainly relevant to the example we are considering in this chapter. The state-

ment 'buildings are not generally erected on boggy ground' is clearly imprecise,

and in the previous two inferential methods, it had to be made precise before it

could be included in the analysis. Fuzzy inference allows this imprecision to

persist through the analysis. Zadeh also points out that implication may be

imprecise. He handles this by his generalized modus penens, which we can illus-

trate wit. the following example.

The proposition:

if a person is tall then he is heavy,

is represented by a fuzzy relation on variables u and v, describing height and

weight respectively. if -H(v) is a fuzzy set describing the meaning of 'heavy',

and ..T(u) a fuzzy set describing what is meant by 'tall,' then

T-Hj(u' v ) - min(l, l-,"T(u)+jH(v))
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is the membership of the pair (u,v) in the set of (u,v) consistent with (if a per-

son is tall, he is heavy).

This definition may seem somewhat arbitrary, but Zadeh supports it by its consis-

tency with a definition found in Lukasiewicz's logic (see Zadeh, 1983, p. 208).

He also calls it a conditional possibility distribution on v given u. To use this

implication to say something about the heaviness of a person, given some fuzzy

- statement about his height (e.g., that he is "very tall"), we use

(T ) (v) - max(min(IT'(u), ;T H(u,v));
(T-H1) T u

* i.e., to find the degree to which a value v could describe the person's weight, we

find the most possible height consistent with his being "very tall" (expressed by

UT') and with the rule that tall people are heavy, and use the height possibility

there as the weight possibility measure.

To apply this to the present example, we will need to extend the notions. Instead

of a single variable u, we will have two variables: b, the bogginess at a par-

ticular site, and d, its distance from the road; instead of v, we will have p, the

probability that a building is present. The appropriate equation for

--(G-P)°D'(P), the possibility distribution over probabilities that a building is

present, which we abbreviate as HIE (P ) , is

vHIE(P) - Tax(min(JD'(b,d), min(ll-1G(b,d)+1ip(p))))

where UG(b,d) is the possibility distribution for 'the ground is boggy and the

* location is far from the road,' and vp(p) is the possibility distribution for

'very unlikely.' vID'(b,d) is the representation of the information we have in a

special case.
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1f course, if we have crisp information about bd (namely that they are equal to

dO ,,, so that L(b 0 ,do) = 1, '(bl,dl) = 0, elsewhere).

then HE (P) - min(1,l-C;(b0,do)+ p(p))

This makes a lot of sense: the possibility of a particular probability being true

depends in this case only on the imprecision of the implication.

Suppose, by way of example, that we define a membership function for "very

unlikely" as follows:

Ip(P) = 1, for p < 0.05

p-0.05
1- 0.05' for 0.05 < p < 0.1

=0, for p > 0.1

This gives:
H}E(P ) = 1 for p _< 2.~i

for0 -) < p < 0.1- 2 - _)

=3- -GO 0.05 fo 0.-1 2 p .

=I-. G  for 0.1 < p

Thus, if G= 1, that is, the ground is clearly boggy and distant from the road,
ther. a building is very unlikely (ZHIE(p) = 'Op(P)). If, on the other hand

uG = 0, the ground is clearly not (boggy and distant from the road) then

-HIE~p)= 1, for all p: our evidence does not exclude any probabilities.

:his extraneous information needs to be combined with evidence from the pixels.

uts suppose that this evidence can be expressed as another membership function

for the possibility of a probability p that a building is present. Then

co:2r:,ining these two sources of information we get

"IA
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IComb (p ) 
= min(Data(P), HJE(p)).

This will have the effect of reducing the possibilities for probabilities which

.ave low possibility, from the extraneous information, but leaving the others

-,unchanged.

:he output of this fuzzy analysis would not be a clearcut answer to the question

,c.hether a building is present, nor even a modified probability that it is present,

as in the Bayesian case. Rather, it will be a fuzzy probability. This could be

used in several ways; we could try linguistic interpretation, producing an output

such as 'it is not very likely that a building is present;' we could attempt some

sort of fuzzy maximum likelihood analysis; or we could construct a procedure to

produce a fuzzy truth value for the hypothesis H. Different theoretical arguments

could be produced to support each of these, but we recommend experimental use of a

method such as this to explore the practical implications of the different schemes.

A.2.6 Dempster-Shafar inference. Dempster-Shafer theory is concerned with the

combination of evidence, and the strength of support that it is proper to have in

an" subset of the set of hypotheses. In our example we have three pieces of

evidence, the distance of a location from the road, the bogginess of the ground,

and the evidence from the pixels, D. We shall start by seeing how to represent

belief about H in the light of information on bogginess and distance, and how to

combine these pieces of evidence.

* ..e construct support functions md(H), md(-), md(H and -), representing the support

,-ven bv distance from the road to the hypothesis, its negation and the union of

t..ese t'w:o hypotheses. In Shafer's theory, the total support allocated to each

element of the power set of the set of hypotheses (i.e. each subset of the set of

hypotheses) must sum to unity. In this case. since there are only two hypotheses

H and H), the power set has just 3 elements (H, H and (H and H)), and this

requirement gives
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md(H) + md(H) + md(H and H) - 1.

The statement that buildings are usually near roads does not imply that any 

knowledge about d supports H; it is merely that large distance supports H. So let

us assign md(H)=O, md(H and H)-l-md(H), and md(H) by a curve of the following type:

A ....

md (H)

d

md(H) can be interpreted as the probability that a distance d implies that H is

true. It can, in principle, be elicted from an expert.

In a similar way we can construct a support measure mb() based on the evidence of

bogginess. Once again it will be very reasonable to ascribe mb(H)=O,

mb(H and H)=lmb(H) and mb(H) by an empirical curve of the type above.

To combine evidence, Shafer recommends the use of Dempster's rule, which may be

stated as follows. If ml(*), m2 () are the support functions for two different

pieces of information, then for any element x in the power set of the set of

hypotheses, the support for x in the light of the two pieces of information is

y-z.xml (Y)m2 (z) "

ml2 (x) 17
l'v z 'ml(Y)m2(z)

where - is the null set.
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* Using this rule, we see that the support function given both b and d is

- mbd(H) = 0

*mbd(h) = mb(H)md(H) + mb(H)(l-md(H)) + (l-mb(H))md (H) =Mb(H)+md(H) -mb(H)md(P)

mbd(H and H)=[l-mb(H)][l-md(H)1.

"e must now combine this support function with a support function deriving from

* the photographic image. If PB is the probability of classification as a building, A

derived from the segmentation algorithm, as in A.2.4 above, then it is reasonable

to assign the following support function given the pixel information D.

mD(H) = Op

mD(H) -= -B

MD(H and H) l-.

This reflects the insight that the cr-edibility of the segmentation algorithm may

not be total; some of the weight of support (in fact, 1-UX) should be allocated to

the complete set of hypotheses, H and H

Using Dempster's rule again, we get

mbdD(H) __________ ___

* -OaPB[mb(H)+md(H) -rb (H )md (H)]

mbd(H)- l:PB)(-[mb(H)+md(H)-mbm(H) m(l

mbdD(H ad = (-)(-m()(.m()

l-kpB~mb(H)+md(H)mb(H)md(H) 
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As with the fuzzy version of this problem, there is no agreed procedure now for

determining what to do with this support function. We are thinking of using these

computations in an automatic feature extraction system, however, and so they must

lead to action implications. One approach is parallel to the Bayesian one, with

the introduction of a region of indeterminacy in which no answer is provided.

Thus, a region is classified as a building if mbdD(H) exceeds some threshold Y

• i" and as a non-building if mbdD(H) exceeds a threshold 1 - Y, whereY is determined

by the relative costs of mislabeling a building or a non-building. In some cases,

neither threshold will be crossed. An alternative approach, which does always

give an answer, is to normalize the support for H and H, i.e., p(H) - m(H) and

m(H)+m(H)

p(H) = l-p(H), before testing against Y. This might be appropriate where the sys-

tem is to suggest possible buildings for subsequent checking by a human

interpreter.

A.3 Template Matching

A.3.1 Introduction. A common problem in analyzing aerial photographs is search-

ing for a particular object, such as a building, in a set of photographs. One way

to handle this is through template matching, where portions of the photograph are

compared with one, or more, templates, each giving a representation of possible

objects. The art of template matching is to construct an algorithm that computes

a measure of fit in such a way that the object is properly identified when the

" measure of fit is good. This idea has been studied in the field of computer vi-

*sion for many years (see, for example, Cheng et al., 1968). It can be applied

* either at the level of raw pixel data or at a higher level in which features or

relational structures extracted from an image are matched with a stored pattern.

Tliere are problems associated with template matching at the pixel level. First,

t-ke appearance of the object may well depend on the illumination, which may be

linknown precisely. A partial solution is to normalize both the image and the

template, by taking deviations from the mean at each point, before comparing. But

in addition, the size and orientation of the object may well not be known in
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advance, so a great number of possible templates may need to be used in the

search; and in certain cases, such as the search for a building, intrinsic
qualities such as shape and surface reflectance may also be unknown.

On the other hand, even at the pixel level, template matching is very useful asa

filtering technique, e.g., in heightening edges and corners (see Ballard and

Brown, 1982). Moreover, some variant of it is usually required to identify the

features that are used in a higher-order matching of relational structures. It

is, therefore, a good problem for beginning our investigation of the application

of belief theories to "bottom up" feature recognition in aerial photographs. In

*this section, we will first describe the standard approach to template matching,

and then go on to show how Bayesian statistics, fuzzy set theory, and Shafer's

belief function theory could be used, both to validate an ad hoc approach, and to

* give reasons for varying the standard approach in certain circumstances.

-.. A.3.2 Standard template matching. Suppose we have an aerial photograph digitized

so that it can be represented as a set (g(i,j)) of pixel gray levels, where

i=l,... ,M and 3-I,... N index the pixels in the photograph. Let t(k,l),

k--m,-m+l,.........m-l,m; l--n,-n+l,...,0 ... n-l,n, be a template, that is, a

set of gray levels for the ideal object. If the template is centered at (i0,J0);

then for (k,l) within the template, the difference in gray level at (k,l) is

t(k,l)-g(i0+k,j0 +l).

* Clearly the template matches very well if this difference is very small in ab-

solute terms for all (kl) within the template (i.e. for kE[-mm], l[-n,n]). We

*O need a single measure of goodness-of-fit, for any center point i0 ,j0 , to assess

how well the template fits at that point. An obvious measure, much used in fit-

ting problems, is the sum of the squared differences,

m n

D(i0 ,j0 ) - k. (t(kl)-g(i0
+ k j0+l))2
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Note that this is only defined if (i0 ,j0 ) is sufficiently far away from the bound-

ary of the photograph for all the points to be within range; that is

m < io < M-m, n < jo < N-n.

The standard algorithm for template matching now seeks (i0 ,j0 ) to minimize this.

Now we can write

m n

D(i 0 'jo) - kL [t2(kl) - 2t(kl)g(i0 +kj 0+l) + g2(io+kj 0 +l)].
k--rnl--n

The first term here is independent of (i0 ,j0 ) and so does not affect the best

choice of (i0 ,jo). In some cases, the last term

° ° n
G(io'J0) - k-m l-ng 2 (i 0 +kj 0 +l)

does not change much with (i0,j0 ) either. If this is the case, then the best

..-. (i0 ,j0 ) is obtained by maximizing

n n

C(i0 'jo) = Z k t(kl)g(i0 +kj 0 +l),nk= - -n

the correlation of the template with the data. C(i 0 ,j0 ) is, in fact, the result

of a finite filter applied to the image, and so in this case it is possible to

view template matching as a special case of filtering. This is somewhat

contrived, since G is not often constant enough to be neglected. Nonetheless,

this is one justification for the selection of important classes of filters, such

as edge and corner detectors, and the developments which we shall give in the next

sections can be extended to the choice of such detectors.
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A.3.3 Bavesian template matching

A.3.3.1 Probability updating. The goodness-of-fit measure D(i0 ,j0 ) adopted in

the last section was chosen in a rather arbitrary way. What is at root of inter-

est to us is the probability that the data around the pixel (io,jo) is really a

noisy representation of the template. In other words, we can establish the

hypothesis

H(iojo): g(io+k,jo+l) - t(k,l) + C(io,jo;k,l)

where E(i0 ,jo;kl) is an error term.

Then, if p(io,jo) is our prior probability that H(i 0 ,j0 ) holds (i.e., that the ob-

* ject is in fact centered at (io,jo)), Bayes' Theorem gives us

f(1g(i'j))1iH(ioJ0))P(io'j0 )

P (i0 'J0 ) = Pr[H(i0 'jo)I~g(i'J)j ] - f((g(i,j))IH(i',j'))p(i',j')

"- i',j'

where f({g(i,j)iH(i0 ,j0 )) is the multivariate density for the (2m+l)(2n+l) values

of g(i,j) within the template around (i0 ,jo), given that H(io,jo) holds. We have

assumed that one instance of the object is to be found somewhere in the image, so

that the set of hypotheses (H(i,j)) are mutually exclusive and exhaustive. In

general, this will not be the case, and this will lead us to modify the

denominator on the right hand side of the equation above. The conclusions of this
0

analysis will not change, however, and so, to avoid inelegant algebra, we will

work on the simpler case.

A.3.3.2 Using loss functions. We could, at this stage, take the posterior

*. probability, p-(i 0 ,j0 ), as our measure of goodness-of-fit, and identify the object -"

-. " at (i,j) where p_(i,j) - max p.(i,j). Alternatively, we can consider this as a

* decision problem, recognizing that what matters is the cost of identifying the ob-
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ject to be at (iljl), when it is, in fact, at (i2 ,J2 ). Let this cost be

L(m)( ) Then the expected cost of making the decision (il,jl) is

L((ilJl),(i2,J2))-~j),(2,j))

" ~~~~L(il,Jl) = I ,(2J)(i'l ' i ' 2 )

i2 J2

The best choice of position is at i*,j*, where (regarding L((ilJl),(i 2,J2 )) as a

positive measure of cost)

Si(i*,j*)- rn L(iljl).
il,JI

Note that, in the special case that L((ilJl),(i 2,J2 )) - 0 if ilJ, i2 -j2

= 1 elsewhere

In this case, where all errors are equally costly, i*-i, j*=j; the problem reduces

to maximizing the posterior probability on H(ij).

Other loss functions will give different procedures, however. For example, suppose

L((ilJl),(i2,J2)) (= i -i2)2 + (jl-j2)2

i.e., the misplacing becomes dramatically more important, the further away the ob-

M ject is placed from its true position. Then

*.. L(i*,j*) = min [ P7 P.(i 2 ,j2 )((il-i 2 )
2+(j l -j2 )

2 )]

ilil i 2 ,J 2

and i*,j* are given, to the nearest integer, by
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i1* - I3 i2P (i2 ,J2 ); J* - I J2P7 (i2,J 2 )
"

2,J2 12,J 2

In this case, it is best to choose not the most likely location, but an average

location, weighted according to probabilities.

A.3.3.3 Recovering the standard algorithm, and some modifications. To carry out

the analysis in the previous section, we have, of course, to compute p (i,j), and

this involves the multivariate density f((g(i,j)}UH(i,j)), which we have not yet

discussed. In one special case, we can derive the simple formula given in Section

A.3.2 above which is used in standard template matching.

. Suppose c(i,j;k,l) has zero mean, is normally distributed, with a variance 2

which is independent of (k,l), and that all the error terms are independent.

Then f(tg(i,j),JH(i,j)) - M +n 1 exp(-(g(i+k,j+l)-t(k,l))2/22

=(2j)(2m+l)(2n+l) exp-D(i,j)
2G

If, further, p(i,j) is independent of (i,j) (i.e. our prior opinion is that the

object is equally likely to be anywhere), then maximizing p,(ij) is equivalent to

minimizing D(i,j).

So we conclude that if:

a) the loss involved in misplacing the object is constant,

b) we have a uniform prior distribution on location,
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c) the noise on the image is normally distributed, unbiased, and
has constant variance,

d) the noise on the image is uncorrelated,

we recover the standard algorithm - minimize D.

"e have already seen, in Section A.3.3.2 above, that if a) does not hold, a dif-

ferent procedure results. The same is true if b), c) or d) are relaxed.

A.3.3.4 Using prior information. Suppose that we have prior belief that some

!cations are more likely than others for the object, but that conditions a), c)

and d) above still hold. Then we should identify the object at (i,j), where (i,j)

maximizes over (i,j)

exp( -D(i,j)/2C2) p(i,j).

As would be expected, this more or less rules out locations which are extremely

unlikely (where p(i,j) is near zero); more significantly, it shows precisely how

the sum of squares should be offset to take account of prior opinion.

A.3.3.5 Systematic error. It is possible that there could be physical reasons

for the error to have a systematic bias, but one that varies over the image. In

other words, we could take

E(c(i,j;k,l)) = (i,j;k,l),

(thus changing part of condition c) in Section A.3.3.3). Keeping the other condi-

tions constant, this leads us to want to minimize

+m +n g)'

k (i+k,j+l)-t(k,l)-:(i,j;k,l) 2
Sm n--n
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This provides another modification of the standard algorithm. We could also, of

course, vary condition d), that the noise is uncorrelated to yield yet another

modification of the standard algorithm.

A.3.3.6 Summary. It should be stressed that the problem we have looked at in

this section is somewhat special. We have assumed that the object is to be found

-  at one, and only one location in the image, and that any failure of the template

to match is caused by noise. We have excluded the possibility that more than one,

or zero, matches exist. The analysis could have been presented for the more

general case, but at a cost of clarity in argument.

What we have shown, however, is how Bayesian Decision Theory may guide the choice

of a template matching algorithm, taking into account:

(i) the possibly variable cost of a wrong identification,

(ii) the inclusion of prior probabilities on location,

(iii) the effect of correlated noise,

*- (iv) the effect of systematic bias.

A.3.4 Fuzzy template matching. The theory of fuzzy sets provides an alternative

way of representing beliefs within a model. L.A. Zadeh, the originator of the

concept of the fuzzy set, stresses that fuzzy sets should be used to handle

imprecision, or what is possible, while probability theory should be used to

handle uncertainty (see, for example, Zadeh, 1981, p. 70). While there are those

* who argue that because of imprecision, people are uncertain, and so where informa-

tion is imprecise, it can be handled through probability theory, it is clear that

fuzzy set theory is not a strict alternative to probability; it is, in a sense, a

broader theory, saying less than probability theory, but still in keeping with the

*O input information. For example, some values of a variable could be highly

possible, but very improbable.

A
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The goal of fuzzy template matching, then, should be to as : to what extent a par-

ticular template fits the observed data; the question will be, "How possible is it

that what we are observing fits the template?" This question has been previously

addressed by Kandel (1982). As is often the case in applications of fuzzy set

theory, there are generally many different ways in which the calculus of the

theory may be applied to a problem. We shall give two approaches, both of which

differ markedly from Kandel's development.

We can first concentrate on the imprecision of our answer to the matching

question. When a photo-interpreter analyzes a photograph, he is likely to respond

initially with a statement such as: "There could be a building of the type I am

looking for just there." This is an imprecise statement, of the kind produced by

a fuzzy analysis. When such an analysis yields a result that the possibility of a

data-set being derived from a given template is, say, 0.8, one interprets this

numerical result by a statement such as that above. In the first instance, let us

suppose that the template t(k,l) is precisely defined, but that the imprecision in

our answer derives from the fact that the data image is, in essence, an imprecise

representation of the template.

One way of looking at this imprecision is on a pixel-by-pixel basis. Comparing a

pixel in the data with the corresponding pixel in the template, we can ask, "How

possible is it that the gray level in the data is consistent with the gray level

in the template?" We can express this as a membership function

kl(g(i+k,j+l),t(k,l)) using the notation developed in the last section. The con-

struction of this function we shall leave for a moment, but it clearly should

Iw depend both on the pixel gray level, g(i+k,j+l) and on the template gray level,

t(k,l). We now argue that the degree to which the template fits the data,

-F(i,j) is given by

LF(i,j) = min (kl(g(im--k,j+l),t(k,l)))
k,l
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"iis is the rule recommended by fuzzy set theory for finding the possibility for

the conjunction of events. We can summarize it by the proverb that a chain is as

strong as its weakest link; or observe that, if it is quite impossible for one

pixel in the template to be represented by a particular gray level in the data

(kil = 0), then indeed it is impossible for the template to match, no matter how

good the fit is at other pixels. At least in this extreme case, the rule above

makes a lot of sense. If, however, it is possible for any data gray level to

. .result from any template gray level at each pixel, then .kl - 1 for each pixel,

and the rule above tells us nothing at all. It is in this sense that fuzzy set

theory is bland.

It might be reasonable to suppose that the possibility of a match at a pixel could

be given by a function of the form

kl(g,t) -a(g-t) 2

So if the match was very good (g=t), the representation would be totally possible;

but if the match was as bad as it could be (say, g-O and t=l, supposing gray

levels to be measured on a [0,1] scale), then the degree of possibility would be

reduced to 1-

* With this formula we would get

kF(i,j) = minl- a(g(i+k,j+l)-t(k,l)) 2 )
k,l

Having defined the possibility of a match centered on pixel (i,j) by this formula,

we could choose the best match as the point where UF(i,j) is biggest. But this

.:ould, to some extent, be contrary to the spirit of fuzzy set theory, where the

coal is not to come up with a definitive, clear cut answer, but rather to lead to

imprecise, yet informative statements about the problem. If installed in an

automatic system, one could set a level of possibility (say 0.9) above which loca-

A-22



:i.. could be identified for further study either b; huma-. experts, or a more

-co:: -le:,: expert system.

Th second way of using fuzzy set theory in this conte:t is to recognize that the

erpiate itself should be imprecise. We are not looking for an exact image in the

photograph, but rather for one that is something like some sort of norm. So we

could specify in advance, for every possible set of gray levels in the image, the

extent to which that could be the object we are looking for. This could be

specified by a membership function

T(t(-m,-n),t(-m+l,-n)..t(+m,-n);t(-m,-n+l) .. t+,nl;.

t(-m,+n),...,t(+m,+n)) T(t), say.

Setting aside for the moment the difficulty of how to specify a (2m+l)(2n+l)

dimensional membership function (even for m=n=l this is a 9-dimensional function),

we now see how simple it is to compute the possibility is that the data centered

at (i,j) represents the object.

"'riting g(i,j) for the vector whose components are g(i-m,j-n), g(i-m+l,j-n),....

• g(i+m,j+n), we just need to compute

* F(i ,j) = .TCg(i,j)) _

to get the number we require.

Construction of 'T in the first place will be no simple task, however. One pos-

sibility would be to get an expert to rate a large number of images either ver-

;al': or numerically. Inen sho'vnm a template-sized imaze. the expert would respond

ihow possible it is that what he is seeing represents the object we are look-

fn: for; he would either give a membership number, or a verbal respoi e. such as

possible,' 'impossible,' etc. , which would then be given a r. imerical

--t ,rPretation. After a large number of responses, the me7bership function

"r,.Id be computed by interpolation (possibly linear). Such a method would be cap-
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zuring the expertise of a human expert ".:ithin the computer svstem--one of the

I.M original emphases in expert system research. Notice that this method .:ould have a 4

considerable advantage over other methods in that different orientations. sizes

and shapes for the building, as well as different levels of illumination could be

handled effectively. A problem might be that sharp dips or peaks which should be

present in the multi-dimensional membership function might not be created by a -.

* method based on linear interpolation. The alternative method of constructing T

.* by making plausible arguments from first principles may be feasible in certain

circumstances, but its feasibility is likely to depend on the size of the template

and the nature of the object being sought.

We have seen then how fuzzy set theory may be used as a calculus for imprecise

reasoning in template matching in two distinct ways. Both ways should be applied

* o real data to test their efficiency.

- 4

A.3.5 Shaferian template matching. Shafer's theory is designed to provide a

method of combining information from distinct sources in the light of what is

known about the reliability of those sources. The most obvious way to apply this

theory to the template matching problem, then, is to consider the pixel gray

levels in the image as being separate data sources, each of which may support the

hypothesis that the template matches. This is similar to the case of uncorrelated

noise in the Bayesian analysis; we are assuming that if the hypothesis is true

(the template fits), then the only reason that the individual gray levels in the

pixels are different from those in the template is that some random error in the

*optical image representation has occurred and that these errors are independent.

The concept of independence in Shafer's theory is still being developed, but it is

clear that what we need to assume is that it is appropriate to combine evidence

using Dempster's rule.

Let us change the notation slightly for convenience of exposition. Label the

pixels in the template from 1 to N, rather than with the two indices i and j as

. before. If ti is the gray level in the template at the ith pixel, and gi that inLi

the image for a particular positioning of the template, then our sources of
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evidence are in pairs (ti,gi). If H is the hypothesis that the template fits,

then it seems sensible to ascribe a set of support functions by relations of the

type

mi(H) - fl(tigi)

mi(H) = f2 (ti,gi)

mi(H or H) = f3(ti,gi)

3

for some functions f(,') satisfying i-ifj(tg) - 1. The precise form of these

functions would depend on what is known about the optical blurring produced when

an image is distorted. It might be, for example, that if t and g are both at an

extreme of the range of gray levels, then strong support is provided for H, while

if t and g are far enough apart, support is given to H, and if either of them is

central while the other is extreme, we can give support to neither (thus giving

our support to (H or H)). Suitable functions displaying these properties are the

following:

fl(tg) = [l-4t(l-t)][l-4g(l-g)][l-(t-g)2]

f2(t,g) (t-g)
2

2-)

f3 (t,g) = 4t(l-t)+4g(l-g)+16gt(l-g)(l-t)][l-(t-g)2].

The combination of these N separate support functions is effected by the repeated

application of Dempster's rule. We need some more notation to express this rule

here. Let ci be a variable name for the hypothesis supported by mi(*); that is
ci (H,H,(H or H)). Then let S1 be the set of (cl,...,cN) whose intersection is

H, S2 the set whose intersection is H, S3 the set whose intersection is (H or H),

and S4 the set whose intersection is the null set.

With these definitions, we can apply Dempster's rule repeatedly, to get the fol-

lowing support functions for the hypotheses:
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Table A-I: Final Support Functions for a Five-Pixel Template

5
Case tI gl t2 92 t3  g3 t4 94 t5  95 m(H) m(H) m(H or R) Z (ti-gi)

i=1

1 0.71 0.68 0.48 0.99 0.64 0.13 0.37 0.59 0.13 0.93 0.09 0.79 0.12 1.22
2 0.22 0.31 0.23 0.90 0.59 0.46 0.00 0.83 0.03 0.37 0.11 0.80 0.09 1.26
3 0.50 0.55 0.11 0.36 0.82 0.87 0.41 0.71 0.00 0.60 0.18 0.38 0.44 0.43
4 0.48 0.77 0.10 0.54 0.88 0.82 0.18 0.53 0.18 0.20 0.27 0.26 0.47 0.41
5 0.32 0.37 0.92 0.19 0.58 0.86 0.70 0.13 0.01 0.83 0.08 0.87 0.05 1.62
6 0.04 0.32 0.66 0.08 0.54 0.09 0.64 0.42 0.75 0.73 0.11 0.50 0.39 0.68
7 0.97 0.68 0.21 0.56 0.72 0.66 0.52 0.89 0.96 0.18 0.14 0.69 0.17 0.82
8 0.22 0.04 0.76 0.05 0.87 0.33 0.17 0.07 0.05 0.05 0.66 0.25 0.09 1.68
9 0.26 0.07 0.31 0.52 0.08 0.85 0.21 0.06 0.70 0.23 0.25 0.59 0.15 0.92

10 0.32 0.99 0.19 0.02 0.20 0.59 0.60 0.03 0.41 0.22 0.19 0.59 0.22 0.61

11 0.72 0.73 0.48 0.51 0.65 0.62 0.37 0.37 0.13 0.14 0.31 0.00 0.69 0.0014

12 0.22 0.21 0.23 0.24 0.59 0.58 0.00 0.00 0.03 0.03 0.99 0.01 0.00 0.0001
13 0.51 0.51 0.11 0.11 0.82 0.85 0.41 0.42 0.00 0.00 0.99 0.00 0.01 0.0010
14 0.48 0.49 0.10 0.10 0.88 0.91 0.18 0.18 0.18 0.17 0.76 0.00 0.24 0.0010
15 0.32!0.31 0.92 0.89 0.58 0.60 0.70 0.67 0.00 0.00 0.98 0.00 0.02 0.0019

In the first 10 cases, the pixel gray levels in both the template and image have

been chosen at random. As may be observed, in none of these cases are the gray

levels close to each other as is evidenced by the moderate values of the sum of

squared differences, which we have computed in the last column of the table. Un-

surprisingly therefore, little support is given to H in these cases. The only

case where m(H) is moderately high, case 8, corresponds to a case where one of the

pixels matches very closely, and at an extreme value (the fifth) while the others

:ield quite inconclusive evidence (the values of m(H or H) for the four other

pixels are 0.71, 0.37, 0.65, 0.67).

Cases 11 to 15 are arranged to be highly correlated, as can be seen from the very

small values of the sum of squared differences. In three out of these five cases,

as we might expect, very high support is given to H, and in every case virtually

no support is given to H. Case 11 is interesting in that, despite the high
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correlation, the uncommitted support is still 0.69. This derives from the inter-

:nediate values of the gray levels; we constructed our support function so that

support for H is only high if t and g are close and at an extreme end of the range.

_ Once the support functions for the template matching at a particular position have

been calculated, we must decide what to do next. One procedure would be to choose

the location which maximizes Shafer's plausibility function, which in this case is

equal to m(H) + m(H or H). Alternatively we could use the fact that the probabil-

ity of H is bounded by m(H) and l-m(H) in this case, and carry out a loss function

computation as in the Bayesian analysis of Section A.3.3.2. Since the probability

of H would lie in a range, the expected loss would also lie in a range. A further

heuristic would be needed (such as minimax loss) to derive a definite conclusion.

O We do not pretend that the functions we have used in this analysis are a proper

reflection of the best available understanding of the physics of the template

matching problem; nor do we believe that the neglect of the relationship between

the information connecting pixel data is likely to lead to the best possible

analysis; we do believe, however, that a belief function analysis can give in-

sights which simple filtering may not be able to echo. -i"

A. 3 .6 Summary. As we mentioned in the introduction to this chapter, template

matching at the pixel level is subject to problems owing to the imprecision in

possible templates, and our uncertainty over how optical conditions might affect

the photographic image of the object. We have outlined above how the procedures

of Bayesian decision theory, fuzzy set theory, and belief function theory might be

, applied to this problem to improve the performance of an automatic procedure for

searching for a particular object in photographs.

.elaxation and Scene Labeling

-. I.4.1 The problem. A common need in interpreting aerial images is to combine

*" tentazive identifications for small regions of the image with more general infor-

mation about the possible relationships of one region to other neighboring
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re icns An example of this problem, at the pixel level, is how to relate a

categorization for each pixel, (i.e., as field, road, water, etc.), to the class-

ifications of neighboring pixels, to ensure reasonable consistency. The seminal

paper bv Rosenfeld et al. (1976) suggested a method for doing this, which has come

to be termed "probabilistic relaxation." A considerable literature has built up

on this technique (where it is often described as "standard"), and there is also

much experience now of using it in practice (see, for example, Peleg, 1980; Bal-

lard and Brown, 1982; Crombie et al., 1982; Haralick, 1983; and Kittler, 1983). ..,

As Haralick (1983) has pointed out, however, "probabilistic relaxation has been a

mechanism whose theory has not been well understood." It was developed to attempt

modification of crude probabilistic estimates of the labeling (or categorization)

of each basic unit, in the light of information at neighboring units. As Haralick

(1982' suggests, however, there are alternative ways of achieving this goal, par-

ticularly if one sets the problem in a larger context than low-level "pixel-

pushing" (to use a phrase of Haralick's (private communication)).

In this chapter, we shall present a Bayesian formulation of the problem much as

Haralick (1983) does; but we shall show how a slightly different formulation can

work on the scene labeling problem first suggested in Rosenfeld's 1976 paper. We

Y shall generalize this as an example of conflict resolution when different kinds of

basic labeling algorithms are available. Then we discuss Shafer's account of

?ose-feld's problem, and show how his theory may be combined with the Bayesian

one. Finally, we discuss Rosenfeld's own application of fuzzy set theory to this

problem, and how it might be modified.

A.4.2 Bayesian analysis. Suppose we wish to label n objects with a set of labels

L -j:j=l. m). This could either be the pixel labeling problem, or. at a

higher level of image understanding, scene labeling once a segmentation algorithm " -

has been applied to identify elemental regions of the image. For each of the n

ob' cts separately, data D is available on which to base the choice of label for

that object. Moreover, we have prior information about which sets of labelings

arE! rore likely than others which ,:e assume can be expressed as a prior probabil-

it, distribution
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p(i) = Pr[label of the ith object is Ii, i I ..

This will be zero for labeling combinations, 1, that are impossible; unlike the

assumption made by Haralick (1983, p.4 22), we observe that some labelings I with

non-zero probability may be more likely than others, and this will be determined

. by our prior knowledge of the kinds of sets of objects which we may expect to find

. in an image of the kind we are looking at. We will discuss how to specify our

prior distribution in the example of the next section. The quantity of interest

to us is what chance should be associated with each labeling 1, in the light of -

the data set {Di: i-l,...,n}. We use Bayes' formula to express this quantity as

Pr[(Di~l] -
• p(1Di ) = Pr[l}] P(1).

Now we follow Haralick, and suggest that since for any object the data Di will

depend only on the true labeling of that object, we can express

- nPr[(Di)II] F-1 Pr[Dijli].

* For example, in the scene labeling problem, the data Di might be a texture vector

which should discriminate between water, forests, buildings, etc. The chance of

getting a particular texture vector from an object which is really a field should

not depend (it can be plausibly argued) on whether the neighboring regions are

buildings, forests or lakes, or on the texture vectors obtained from neighboring

regions.

Using these equations, we get
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n
QPr[Di li.,

p(1I(Di}) p P(U). (A.2)

Z F1Pr[Dilli']p(l')
!.' i:-i

Now we see that our result depends only on p(j), and Pr[Dilli]. We have discussed 7,

the first of these above. The second could be assessed directly, as Haralick

(1983) implicitly assumes, and we suggest that this may be the most satisfactory

approach. One of our purposes here, however, is to show how a Bayesian approach

differs from the non-linear relaxation method of Rosenfeld et al. (1976). The in-

puts in that process are not the conditional probabilities on the data given the

label, but the inverse conditional probabilities, Pr[lilDi]. If we are to be

coherent, it is not possible to specify these probabilities independently of p(1),

our prior opinion on labels, since

Zer[lilDi]Pr[D
i ]  P r[li].

~~D i  ,.

Pr[Di] will not need to be assessed in our subsequent analysis; all we need is to

assure ourselves that a set of probabilities Pr[Di] (or a distribution, if the

data are continuous) exists which allows a particular assessment of Pr[li] to be

consistent with the algorithm for finding Pr[liIDi]. This will be the case so

long as the m-vector Pr[li-\ki, k-l....m, is in the convex hull of the vector

Pr[li=?k D], k-l,...,m, for all D which are possible. This is unlikely to be much

of a restriction, and can be checked in a working algorithm. We shall continue

our analysis assuming that Pr~lijDi] and Pr[li] can be separately specified.

Now given that we can take the statistical interaction between the label and the

data to be localized, we have
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Pr[li Di]Pr[D Pr[Di ]

er[Dilli] - Pr[li] rD

an- inserting this in the formula above, we get

p(!{(Di}) = K [ f Pr[li Dil {P(] (A.3)
i-i Pr[li]

where K is a normalization factor which ensures Jp(1j(Di)) 1 1, i.e., that we are

really dealing with a probability distribution over possible labelings 1. Notice

. that in this formulation we do not have to assess probabilities of getting the

data {Di) either conditional on the labeling, or marginal over labelings. This

assessment task, which could be very difficult in the case of continuous multi-

dimensional variables, such as texture vectors, has been replaced by the ap-

parertly more tractcAle problem of assessing conditionals on labels given the

data. for each object independently. (We note that the advantage in doing it this

* .i.. Cav r:ay be more apparent than real, however.)

second apparent advantage of this formulation is that it separates (a) assess-

.er.t of the probability of each ii considering only the corresponding Di , from (b)

assessment of the impact of interdependencies among the set of li on the probabil-

it-: cf 1. Note that the ratio on the right hand side, between p(1) and the

product of the Pr[li] is a measure of the degree to which non-independence among

the -i supports or detracts from the likelihood of a particular set of labels, 1.

To tr.e extent that the ratio exceeds (falls below) 1.0, the li (do not) "belong

to~ether" and p(iI{Di)) is increased (decreased).

_e suggest that this scheme is a more satisfactory way of handling the input in-

:--o~ation which Rosenfeld uses in his nonlinear probabilistic relaxation method

than the procedures of that method itself. This is not to say that probabilistic
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relaxation should not be used, since as a numerical method it can clearly produce

sensible practical results. Rather, we should interpret the computations of prob-

abilistic relaxation either as Haralick (1983) does, as a process of sequentially

including more and more information; or, as Hummel and Zucker (1983) do, as not

being probabilistic at all. With the latter interpretation, we can think of

relaxation as being a sensible heuristic technique for deriving consistent

labelings, or even as a non-probabilistic method for generating probabilities, to

be contrasted with the more intelligible probabilistic approach, given by the for-

* mula above.

A.4.3 Rosenfeld's example. To illustrate the difference between our suggested

method, and non-linear relaxation, we shall apply it to the example that is used

*in Rosenfeld et al. (1976). A triangle is identified in an image, and the scene

interpreter has to make a three-dimensional interpretation of this triangle on the

basis of information about each of the three lines. Each line can be labeled with
one of four labels, which we shall call 3_ 2 ' '3 and 4 and of the 43-64 pos-

sible labelings, only eight are possible, as listed in the table below. The

reader is referred to Rosenfeld et al. (1976) for aprecise meaning of these

labels and the eight interpretations of the triangle.

Table A-2: The Eight Possible Labelings

jLabeling of sice: AP I((2) ;3) 1(4) ;_5) ;6) 1(7) 1(8)

X1 x2  X1  _ _ \3 X2_ X2 _X

. 2 N3  X 1  1 X4 X2 X2

2 1 3 1 2 14 2

Prior information is that each of these labelings is equally likely; this being

so, p(1 (k)) = 1/8, for each k. Moreover, we must use this information to give the

prior marginals for each label on each side. For side 1, this gives

P( 1 =i)=3/8; P(
1
1 -"2 )-

3 /8; p(l1 - .3)-l/8; P(1 1 - 4 )=1/8. (For example, P(l1- 2) -
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(2) +p ()p( ) + p(!(6 ) ) + p(1(7 ).) But because of the symmetry in the prior

information, we find the marginals to have the same values for sides 2 and 3 as

they have for side 1. We can now compute the second factor in braces in the ex-

pression for the posterior distribution, p(1FtDi)), given at the end of the last

section, i.e., the interpendence ratio discussed in the last section. This is the

joint distribution for the labeling input, divided by the product of the marginals:

Interdependence
Ratio

I(I) 2.37

1(2) 2.37

7(3) 7.11
l(4) 7.11
7(5) 7.11
o(6) 7.111 M7 7.11

7(8) 7.11

The lower ratios for l(i) and 1(2 ) reflect the fact that the labels they involve

and "2) are more frequent in the possible labelings than X3 or X4; thus, for

example, the cooccurrence of Xl's in 1(I) may-more due to chance (rather than

interdependence) than the occurrence of X3 , 'i' and >,l in 1
(5 ) .

In order to make a comparison between our method and that of Rosenfeld, we have

computed the posterior probabilities by our formula using these ratios, for each

of the eight examples of input probabilities suggested by Rosenfeld, as given in

Table A-3.
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Table A-3: Input Identification Probabilities

Case p(1I DU) p(1 2 D 2 ) p(13 ID3 )

A 2 3 X4  1 2 :X 1  A 2 3  '4 13: 1  X2  43 4

A 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

B 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0

C 0.5 0 0.5 0 0.4 0 0.6 0 0.5 0 0.5 0

D 0.5 0 0.5 0 0.3 0 0.7 0 0.5 0 0.5 0

E 0.3 0 0.7 0 0.3 0 0.7 0 0.5 0 0.5 0

F 0.2 0 0.8 0 0.3 0 0.7 0 0.5 0 0.5 0

G 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2

H 0.3 0.2 0.3 0.2 0.25 0.25 0.25 0.25 0.2 0.2 0.4 0.2

Table A-4 below contains the results of the computations, giving the posterior

probability of each of the possible interpretations being correct, based on our

Bayesian formula (B), and on Rosenfeld's non-linear relaxation method (R). --

Table A-4: Posterior Probabilities

Case: A B C D E F G H

gB R B R B R B R B B R B F B R

.1) 1/20 1/8 1/10 1 2/23 1 1/14 0 1/18 1 1/23 0 27/350 1 3/59 0

;(2) 1/20 1/8 0 0 0 0 0 0 0 0 0 0 8/350 0 2/59 0

1(3 ) 3/20 1/8 3/10 0 9/23 0 7/14 1 7/18 0 7/23 0 81/350 0 9/59 0
;14) 3/20 1/8 3/10 0 6/23 0 3/14 0 3/18 0 3/23 0 81/350 0 16/59 1

LW 1(5) 3/20 1/8 3/10 0 6/23 0 3/14 0 7/18 0 12/23 1 81/350 0 9/59 0

; (6 ) 3/20 1/8 0 0 0 0 0 0 0 0 0 0 24/350 0 6/59 0

P1(7) 3/20 1/8 00 00 0 0 0 0 0 0 24/350 0 6/59 0
1(8) 3/20 1/8 0 0 0 0 0 0 0 0 0 0 24/350 0 6/59 0

:;e have represented the probabilities in Table A-4 as fractions rather than

decimals in order for the reader to see probability ratios more easily.
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. IS not t- wrst likely is chosen (in case E it is only -: as likely>. The

S the Bayesian algorithm in case A may seem surprising: since the data

S:i'.'ez each label to be equally likely for each side, and each interpretation to be

vqually likely, would it not seem more reasonable to use the relaxation result,

that each labeling should be equally likely, posterior to getting the data? This

inference is false, however, because the labels are not distributed uniformly in

the possible labelings; if the data suggest that a side is just as likely to have

label ),3 as /i for example, this favors labelings 1 1 and 1(5  over 1(l)

since it must give more weight to the few appearances of label

...4.4 An alternative Bayesian analysis. An important observation can be made

* regarding the Bayesian analysis in the last section, namely that the meaning of

the input conditional probabilities, p(lilDi), may in some cases be unclear. To

illustrate this point, and also to illuminate the triangle example, we shall now

construct a simple example of a labeling problem and discuss the issue in the con-

text of that problem.

Suppose that a room contains a large number of urns, of two types, A and B. Type

urns contain 50% black balls and 50% white balls, while type B urns contain 80%

black balls and 20% white balls. A probabilistic labeling procedure (analogous to

the line labeling algorithm for the previous example) consists of taking a random

sample of size n from any urn, with replacement. This will give the following

probabilities for getting r black and n-r white balls from the urn.Si

Pr[rjA7 = (n)(o'5)n

Pr~rIB I = (n)(o. 8 r 0.2,,n -r
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So the algorithm yields, in the general notation Pr'Dijli , ard :nGt Pr JliDi As

we mentioned previously, it would be much more straightforward to do a Bayesian

analysis supposing that Pr[DiIli] were the numbers produced by the line labeling

algorithm in the triangle case; indeed Haralick's analvsis of the general case

does make this assumption. Let us suppose, however, that we must deal with
~~PrrliI i'

Suppose, in our simple example, we are now presented with a pair of urns, and we

are asked for a labeling of the pair. We have, from Bayes' Theorem, and using an

obvious notation,

Pr[rl ,r2 Ai,A 2PriAr 1 r1= Prr1 ,~ rA 1,A 2 ]P r -,, .1 A 2 1 r l ' r 2 ] P r ~ r , r 2 P r , , 2

with similar expressions for the other labeling pairs (A1 !B2 ), (BI,A 2 ) and

(B ,0). The analysis of Section A.4.2 now gives

Pr[A 1 ,A2 ]

rA1,A21rl,r2] K Pr[Allrl]Pr[A2r2" Pr[A,]Pr[A 2 ]

o. must ask ho%-w Pr[AlIrl] is computed. Clearly in the triangle example it

hould be determined by the very formula that led to its inclusion in the expres-

sion above, namely

Pr1rlIAIjPr Al'
Pr[Al rI ] = (A.4)P r Pr[rl]

S titu:io. of (A.-) in the previous equation leads to the equivalent, in this

cortext, of Haralick's ecuation, (A.2). If, of course, Pr[AI] is subjectively

assessed. then there is no reason why we should not think of Pr[AlIrl] as also

bc'ing subjectively assessed. But even if this is the case, it is clear that its
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.l ~ assessment must be made in awareness of the relationship (A.4) above which must

lhold. In summary then, the identification of the input numbers in the examples of

Section A.4.3 as conditional probabilities of labels given data is appropriate

only in the absence of an understanding of the data generation process comparable

to the understanding we have in the urn sampling example; i.e., if we clearly un-

derstand how often a given true label will produce a given set of data D i, we

should use equation (A.2) rather than equation (A.3).

Let us suppose, then, that we have such an understanding. We can offer an alter-

native Bayesian interpretation of the triangle example of the last section, which

utilizes Rosenfeld's data, if the numbers in Table A-3 are taken, not as probabil-

ities of the labels given the data, but as the relative sizes of the probabilities

of data given the labels. For example, we might have, in case A;

! ..- Pr[DI I XI]:Pr[D 1II=2] :Pr[DI II=A3] :Pr[DINII=%,4]

= 0.25:0.25:0.25:0.25.

'ith this revised interpretation, we can recompute the posterior probabilities

using equation (A.2). The table below gives the results of this calculation,

again with Rosenfeld's solutions for comparison.

Table A-4': Posterior Probabilities--Revised Interpretation

Case: A B C D E F G H

Labeling B R B R B R B R B R B R B R B R

i( I )  1/8 1/8 1/4 1 2/9 1 3/16 0 3/20 1 3/25 0 27/140 1 3/25 0
S

( 2 )  1/8 1/8 0 0 0 0 00 0 0 0 0 8/140 0 2/25 0
1 1/8 1/8 1/4 0 3/9 0 7/16 1 7/20 0 7/25 0 27/140 0 3/25 0 . -

1( ) 1/8 1/8 1/4 0 2/9 0 3/16 0 3/20 0 3/25 0 27/140 0 6/25 1

-(5) 1/8 1/8 1/4 0 2/9 0 3/16 0 7/20 0 12/25 1 27/140 0 3/25 0
1(6) 1/8 1/8 0 0 0 0 0 0 0 0 0 0 8/140 0 2/250

77) 1/8 1/8 0 0 0 0 0 0 0 0 0 0 8/140 0 4/25 0

1() 1/8 1/8 0 0 10 10 1 0 0 0 0 8/140 0 2/25 0 _7-
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C Once again there are marked differences from the Rosenfeld analysis.

Further evaluation of the Bayesian inference schemes we have developed above will

depend on their application to real scene labeling problems, as an alternative to

relaxation labeling, to determine if empirically useful results can be obtained.

" A.4.5 Bayesian analysis of conflict from more than one labelinz algorithm. In

some cases more than one probabilistic classifier is available to give input prob-

abilities for the labeling of each object in the light of data, Pr[lilDi] or

Pr[Dilli]. We can think of these as being different because they are based on

different data, D i and Di', say. This is not unreasonable, if the methods are

based on different ways of handling the fundamental inputs of image analysis,

namely the gray levels at the pixels. We shall consider an alternative

interpretation, namely that the methods have different reliabilities, in a later

section.

We are now interested in computing the posterior probability on 1 given the two

data sources, (Di) and (Di'). This is given by

Pr[(Di' {D1i,1]Pr'lJ(DiI]P(.L ljDi;,(Di'}) = Pr i ( i)

Pr[(Di' ) {Di),1]Pr1{Di)J1]p(i)

PrJ Di'I IDi})Pr[IDi)]

Now once a labeling 1 has become known, the chance of getting particular data

!Di ' will not depend on 1Di). Hence, we may write

Pr[(Di' I(Di) ,!] = Pr[(Di' 11'.
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" We could leave matters there, and simply input values of Pr[(Di)I1] and

Pr[(D i' 1]. But to follow our comparison with Rosenfeld's analysis, we could

-. adopt the first Bayesian interpretation (of Section A.4.2) to get

• _-.. n Pr[lI Di'] n Pr[lilDi]

P, 1 ' Pr[li J i Pr[l] j-

where K' is another normalizing constant. This expression is symmetric in the two

data sources, as we would expect.

To see how this would affect the computations, suppose the first data source

yields the identification probabilities given by entry A in Table A-3, but that

*- the second data source yields the identification probabilities of case B in that

table. In this case, the posterior probabilities for the 8 possible labelings,
,) 1()are, respectively 1/28(1,0,9,9,9,0,0,0). As we would expect, this

gives an interpretation which is different from A and B. Like B, it gives zero

probability to four of the labelings, since one of the methods has shown them to

-" be impossible; it also suggests l(i) is less likely than either independent data

source would suggest; here the second method, B,is confirming the small change in-

dicated by A, thus reducing it.

A.4.6 Shafer's approach to the triangle identification problem. In a discussion

of how to apply his belief theory to the problem of combining dependent evidence .

Shafer (1984b) touches upon Rosenfeld's scene labeling problem. Shafer's

criticism of Rosenfeld's method, as an argument for the proper selection of frames

r when combining evidence, is of less interest to us than his recommendation of how

the problem should be analyzed.

*He suggests that the data which give probabilistic labelings for each side of the

triangle should lead to the construction of three independent belief functions

over the frame consisting of the 64 labeling combinations. The first three of

these are derived from the pixel data for each side; the fourth comes from the
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prior information regarding which interpretations are possible. The pixel infor-

mation corresponds to case B of Table A-4 above. Table A-5 below gives Shafer's

allocation of support; the notation is self-explanatory, and we only quote the

subsets of the set of hypotheses which are given non-zero support.

Table A-5: Shafer's Four Support Functions

ml m2  m3  m4

ml(X3,(Xi},{%i))=I/2 m2 {Wi},X3,(Yi)-I/2 m3(1%i ,1?%i ,%3)-i/2 m4(X2,X2 X2)-i/8

m4 (X2 , 1 
',X)-l/8

m4 (X2,X4,X 2)=l/8' ~~~m4 ( 2 ' 2 ' ) 1 8 .i

- m4(X4,X 2 , X2 ) - I / 8

:he notation () is short for {(i,X 2 ,%3 ' '4}, the union of the hypotheses that

each of the four labels is correct.

-..e now combine these four support functions, using Dempster's rule, to get

m1234 (, ,l,, ,, 1)-I/4 ; m1234C'( " '3 , ' I/ .-

m12 34(>,1,22 d,3 )- I /4; m1 2 34 ( 3 ,>l,\I)lI/4

-with zero support to all other combinations of hypotheses.

":ote that the suggestion of this analysis is that we should give equal support to

he labeligs il, l _ 4 , and _ this is in sharp contrast to the results

of the first Bayesian analysis of Section A.4.3, where the posterior probabilities

"were 1/10, 3/10, 3/10, 3/10. The distinction is caused by the handling of prior

belief about label .3. In the first Bayesian analysis, recognition that we would

expect ;.3 to be only 1/3 as likely as >i on any side, instead of just as likely,
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as the data suggest, leads us to conclude that labelings containing 'q are more

likely (in fact, three times as likely) as 1(i) which does not contain >3

The Bayesian analysis would be recovered if different support functions for ml,

m2 , and m3 were used. If we were to think of the support for the labels given the

data as relative to the underlying support for the labels, based on m4 , then we

'. might take

-. " l(Xll~il~~i})I/4; ml(X3,(Xi),(Xi))-3/4 -

with similar assignments for m2 and m3 . Using Dempster's rule on these, we

recover the Bayesian results. An important point to make here is that the meaning

of Shafer's support functions is very significant.

Alternatively, and perhaps more acceptably, we can compare Shafer's analysis with

the second Bayesian interpretation above. In that case, Shafer's support function

of Table A-5 leads to results which are consistent with column B of Table A-4'.

r. We conclude that Shafer's approach has nothing to offer over a Bayesian theory

when applied in this way to this problem. But there are ways in which it can

provide greater insight, as we shall describe in the next section.

A.4.7 Conflict between two or more evidence mechanisms. Let us now suppose, as
we did in Section A.4.4, that in making local assessments of the appropriateness

of a label for each object separately, we have two competing inference procedures.

Instead of imagining, however, that each of these procedures produces probabil-

ities that the label of each object should be a particular label, let us suppose

that we specify support functions ml(*), m2 () on the set of all subsets of

labelings.

Thus it might be that the data either point unambiguously to label >'i' with prob-

ability a, say; or, with probability 6, the data point to (X2,X3), but fail to

[ distinguish between them; or, with probability l-c-6 do not tell us anything.
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This would lead to the following support function:

and m(C)-O for C being any other subset of the set of labels. As we pointed out

above, the probabilities could be thought of as relative to the underlying

probabilities.

If two different methods were available for labeling on the basis of low-level

data about each object, and these labelings were in conflict, we can now see h.W

to use Shafer's theory to combine this evidence, and prior evidence, to illuminate

the labeling problem. Specifically, suppose each object can be addressed by two

different inference procedures, but that these are applied to each object

separately. Application to the ith object will lead to support functions

mij( ... ;( I  .... Xm};...;x;... . . M);... for j-l,2

- where x is any subset of the set of labels and it is in the ith position in the

list of arguments. This notation implies that, while the frame for the support

function actually has (2m-l)n elements (there are 2m-1 possible sets of labels for

each of the n objects), the inference procedure operating on the ith object does

not have anything to say about the other n-l objects, and so the support function

for the ith object allocates positive measure only to the universal set of labels

.m } for all objects except the ith. Dempster's rule is now applied to the

2n support functions thus prescribed, to produce a combined support function

. mD(; this is then, in its turn, combined with the prior support function mp(

' again by Dempster's rule, to give a final support function for subsets of the set

. of all labeling n-tuples.

To illustrate this rather complex description, let us return to Rosenfeld's tri-

angle example. Suppose that the six support functions in Table A-6 are obtained

by application of two distinct line labeling algorithms to the three sides of the

triangle.
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Here we have abbreviated the notation. The labels in a support function mij~ just

refer to the ith object; mjj gives exclusive support to the complete set

2 1113,4)for objects other than the ith. Let us demonstrate how Dempster's

* rule is now used. First let us construct ml,1 2 (,) by combining the first two

belief functions in table A-7, again using the abbreviated notation.

mll(A 1)ml2 (Xl)+mll(xl)ml2(X1X'2X3 )+MllQ\1 )ml2QXlX3)+m1 1 (Xl)ml2 (XlX 2X3X4)

ml 1 ( l l-M l(X2?X4)m 2(k1 ) -m l(A2X4)m 2(X I?3)

The numerator of this expression is the sum of products of support functions for

* subsets whose intersection is exactly Xl; the demonimator differs from one by a

similar sum over subsets with a null intersection.

Using similar methods, we derive the following support functions.

Table A-6: A First Application of Dempster's Rule

ml, 2 , 1 2  m 3 ,1 2

9 ml 1 2 (X1 ) - 0.744 m2 2 v) - 0.097 m3 2 A) - 0.904

fm,2 I') - 0.116 m2 2 X) - 0.861 m3 2 X) - 0.048

m- 0.023 m2 2 XX) - 0.014 m3 2 XX)- 0.048

ml,1 2( .I.2 3) - 0.047 m2 ,1 2 0 2) - 0.014

*ml, 1 2(. 2) - 0.047 m2 ,1 2(A)A 2X3) - 0.014

ml,1 2 (,1\ 2A 3A,4 ) - 0.023
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The next step of combining these support functions into a single support function ..

*over the labeling triplets for the triangle will give support to 90 different

* .elements. Rather than compute all these, let us introduce the prior support func-

tion at this stage.

Let us first take mp(*) to be the simple support function suggested by Shafer in

his work on this example giving equal support to the eight possible labelings.

This allocates no support to anything other than single labeling triplets (rather

than sets of labels for one or more of the sides) and, as a result of joining this

with the support functions in Table A-7, the combined support function will be of

the same type. The calculations using Dempster's rule on the four support

functions, give:

mpD~ll,Xl,ll)-0.119; mpD('l13,Xl)-0.845; mpD(Xl,Xl,X3)-002 p(3,ll)004

Because of the special structure of this support function, these are, in fact,

probabilties for each of the four labelings, and may now be used with a loss

function, as suggested by Haralick, 1983, to make a labeling decision.

It will be more interesting, however, to investigate the implications of Shafer's

theory when the input support functions give positive support to some combination

of simple hypotheses. In particular, suppose mp(') gives support of I to the set

of labelings {(X 1 1 ,1 1 ),2,, 2 ),() 1 ,x3 ,x1 ),( 1
'

1 ,X 3 ),(X 3 ,X 1 ,X 1 ),(X 2 ,X 4 ,X 2 ),

(A2, ,X 4 ),(X 4 ,X 2,X 2 ))} Thus, instead of supposing, with the Bayesians, that each

of the labelings 1(l),....l(8) is equally likely, we just give all our support to

the set of all 8 labelings. This highlights the distinction between the Shaferian

and Bayesian representations of lack of knowledge. It is now a tedious, but

straightforward matter to compute the final support function, and the associated

belief and plausibility functions of the sets of hypotheses (labels). .
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Table A-8: Computed Belief Functions

Label Set Support Belief Plausibility

11 0.0766 0.0766 0.1311

1 0.8633 0.8633 0.8924

14  0.0066 0.0066 0.0132

15  0 0 0.0261

(113) 0.0221 0.9620 0.9934

(Ui,14) 0.0041 0.0873 0.1367

(11,15 ) 0.0192 0.0958 0.1301

{l3,14 0 0.8699 0.9042

{14,!5) 0 0.0066 0.0380

{13,1 51 0 0.8633 0.9127

111314) 0.0012 0.9739 1.0000

{!(,141!5) 0.0011 0.1076 0.1367
,13,15) 0.0056 0.9868 0.9934

(13,4, 1 5) 0 0.8699 0.9234

(13,14_ _,I 0.0002 1.0000 1.0000

We have not included in the label sets any set of labels which includes a label

triplet not in the allowable four (1, 1 14 or 15). It is clear that 13 has the

strongest support of any simple labeling; moreover, one sensible procedure for

making a conclusion from an analysis of this kind is to adopt the simple labeling

3with the maximum plausibility. Once again, this is 1 in this case.

This analysis does not give us a probability for a hypothesis, but it does lead to

(approximate) bounds on that probability, given by Bel(*) and Pl('). Using these .

bounds in a loss function calculation might still give an unequivocal labeling

decision, or, more likely, will lead to indeterminacy. This may well be the

proper output of the labeling procedure, since it corresponds to the inherent in-
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determinacy in the input information.

We have seen how Shafer's theory may be applied to handle the object labeling

problem. It can be a more sensible way of representing what the data tells us,

and we recommend the construction of a labeling program, and low-level labeling

algorithms, which are consistent with this philosophy. 2

A.4.8 Fuzzy labeling. In this section we examine the potential of fuzzy set

theory for the scene labeling problem. We will first describe in outline the use

suggested by Rosenfeld et al. (1976), and give a critique of that use. Then we

shall suggest an alternative way that fuzzy measures can illuminate the scene

labeling problem.

Rosenfeld et al. start by presuming the existence of an object labeling algorithm

which is able to produce for each object i, and each label, %k, a number l i(Xk)

between 0 and 1. This defines the degree to which it is possible to label object

i with label ?k. They also define a number Tij(Xk'Xl) as the degree to which

label Xk for object i is compatible with label X1 for object j; this number is

presumed to derive from some discussion of physically possible relationships be-

tween objects. As before, in our discussions of the object labeling problem, we

see that the task is to combine two types of information, namely, intrinsic infor-

mation derived from each object about appropriate labels for that object, and more

global information about the compatibilities of different combinations of labels

for the different objects. In this case, this information is given by i(" ) and

Yij ( • , ) , respectively.

Then a procedure has to be defined to operate on these input numbers to produce a

combined opinion about appropriate labelings for the set of objects. Rosenfeld et

al. do this in two ways. They are not explicit, but appear to compute, for any

labeling 11,12,.... In, the expression

1,j
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A
This represents the degree to which the labeling is compatible both with the data

at each object and with the relationships between objects. One could then choose

the labeling, 1, for which this expression is largest.

As an alternative, they suggest that a sequence of membership functions should be

derived using the relationship

1i (k+l) 1  = min(max[min(Pi(k)(l.) , (lj 1. J (J)'i i lj ) ]_

J

This is a kind of relaxation, justified intuitively. The expression in the inner

square brackets is the degree to which labels lI, l. for objects i and j are

possible. The expression in the outer brackets is the degree to which li and l*

are possible, where l.* is the most plausible label for object j consistent with

label 1 for object i. Finally, the overall possibility of the label ii for ob-

* ject i is the least of these degrees of possibility over all other objects j.

Rosenfeld et al. report that the behavior of this latter algorithm is unsatisfac-

tory when applied to real labeling problems, since degrees of possibility may

decrease, but never increase, by using it.

As an alternative to Rosenfeld et al.'s approach, consider the following, which

is, in essence, a generalization of their first method. Suppose that instead of

representing our knowledge about the consistency of labelings by relationships be-

* tween pairs of objects, we look at the whole set of objects at once. Thus, in-

stead of ','.), we specify C(11 ,12 ..... n) to be the extent to which the labels

iI ..... in for the objects 1,...,n, are possible. We then compute the overall pos-

sibility of a labeling to be

a°

i "m n m n U ~ i ) 1 ... in ) ) (A .5 )
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and we could then adopt the labeling for which this Treasure is biggest. In the

case that

(1 . in) -re.in ij(il ) "

this reverts to Rosenfeld et al.'s first method. Our method allows greater

generality than theirs, however, since we can ask for more general information

than the compatibility of pairs: it may be, for example, that label 1 for object :.J

1 is compatible with label 3 for object 6 only if object 7 has label 2; this in-

formation cannot be represented in the function W(',').

As an example of our approach, consider once again the triangle labeling problem.

Suppose that for some image of a triangle, we have the following possibilities:

Table A-9: Input Possibilities (1)

12 3 4

101C)  1 0.1 0.9 0.2
0.7 0.3 0.95 0.6

3 1 0.1 1 0.3

This says that for side 1 labels X1 and A3 are very possible while labels X2 and

A4 are well-nigh impossible, and so on. Further suppose that the following values

of are given for the labelings 11 to 18, respectively, using the notation of

Table A-2.

1, 0.1, 1, 0.85, 1, 0, 0.1, 0

with zero possibility for all other labelings. Then the values of (A.5) for the

* eight labelings are, respectively,

0.7, 0.1, 0.95, 0.7, 0.7, 0, 0.1, 0.
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Thus the most possible labeling is 13 Notice that even if all of the eight

labelings were zhought to be totally possible (h(lk)=l, k=l. 8), we would get

0.7, 0.1, 0.95, 0.7, 0.7, 0.1, 0.1, 0.1

from applying (A.5), a barely noticeable difference.

The dependence of the output of this algorithm on the smallest numbers around is

intuitively unsatisfactory. Part of the problem may be interpretation of the pos-

sibilities as probabilities. In fact, as Zadeh points out, generally speaking

possibilities will be bigger than probabilities. A label may be very possible,

but improbable. A highly probable label will not be almost impossible. That

being so, it mav be that more plausible input possibilities may be as below:

Table A-10: Input Possibilities (2)

' 1 2 3 '4

- C 1 0.5 1 0.5
•_2( ") 1 1 1 1

1 0 1 0.8

If we combine this with the total possibility ( =i) of the eight labelings

... ,1, using (A.5), we get, respectively,

1, 0, 1, 1, 1. 0, 0.5, 0.

This is not very informative; it excludes three possible labelings(12 1 6 8
2 6 and 18) on the grounds that label '2 for side 3 is not possible, and

leaves us with the information that four labelings remain totally possible. We

suspect that this phenomenon is endemic in uses of fuzzy set theory in this way.

.je conclude, therefore, as Rosenfeld et al. did, that using fuzzv logic on the

. scene labeling problem is not likely to be very useful.
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